
Tendermint Blockchain Synchronization:
Formal Specification and Model Checking

Sean Braithwaite2, Ethan Buchman1, Igor Konnov3(B), Zarko Milosevic2,
Ilina Stoilkovska3, Josef Widder3, and Anca Zamfir2

1 Informal Systems, Toronto, Canada
ethan@informal.systems

2 Informal Systems, Lausanne, Switzerland
{sean,zarko,anca}@informal.systems
3 Informal Systems, Vienna, Austria

{igor,ilina,josef}@informal.systems

Abstract. Blockchain synchronization is one of the core protocols of
Tendermint blockchains. We describe our recent efforts on formal speci-
fication of the protocol and its implementation, and present model check-
ing results for small parameters. We demonstrate that the protocol qual-
ity and understanding can be improved by writing specifications and
applying model checking to verify their properties.

1 Introduction

Tendermint is a state-of-the art Byzantine-fault-tolerant state machine replica-
tion (BFT SMR) engine equipped with a flexible interface supporting arbitrary
state machines written in any programming language [6]. Tendermint is particu-
larly popular for proof-of-stake blockchains, and constitutes a core component of
the Cosmos Project [7]. At the heart of the Cosmos Project is the InterBlockchain
Communication protocol (IBC) for reliable communication between independent
BFT SMs; what TCP is for computers, IBC aims to be for blockchains.

Multiple Tendermint-based blockchains run in production on the public Inter-
net for over a year, with new ones launching regularly. They carry billions of
dollars of cumulative value in the market capitalizations of their respective cryp-
tocurrencies. One of the primary deployments is the Cosmos Hub blockchain [24].
It is operated by a diverse set of 125 consensus forming nodes; they are connected
over an open-membership gossip network consisting of hundreds of other nodes.

Tendermint was the first proof-of-stake blockchain system to apply tradi-
tional BFT consensus protocols at its core [18]. The Tendermint BFT consensus
protocol constitutes a modern implementation of the consensus algorithm for
Byzantine faults with Authentication from [11], built on top of an efficient gos-
siping layer. The latest description of the consensus protocol can be found in
the technical report [8]. Tendermint has been a source of inspiration for a wide
variety of blockchain systems that have followed [9,26], though few, if any, have
achieved its level of maturity in production.

Supported by Interchain Foundation (Switzerland).

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 471–488, 2020.
https://doi.org/10.1007/978-3-030-61362-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_27


472 S. Braithwaite et al.

The reference implementation of the Tendermint software is written in
Go [25]. Under the hood, it consists of several fault-tolerant distributed pro-
tocols that interact to ensure efficient operation:

Consensus. Core BFT consensus protocol including the gossiping of proposals,
blocks, and votes.

Evidence. To incentivize consensus participants to follow the consensus pro-
tocol (and not behave faulty), in the proof-of-stake systems, misbehavior is
punished by destroying stake. This protocol gossips evidence of malicious
behavior in the form of conflicting signatures.

Mempool. A protocol to gossip transactions, ensuring transactions that should
eventually end up in a block are distributed to all participants.

Peer Exchange. Gossiping is based on communication only with a subset of
the peers. Managing the list of available peers and selecting peers based on
performance metrics is done by this protocol.

Blockchain synchronization (Fastsync). If a peer gets disconnected by the
network for some time, it might miss the most recent blocks in the blockchain.
A node that recovers from such a disconnection uses the blockchain synchro-
nization protocol to learn blocks without going through consensus.

We are conducting a project to formally specify and model check these pro-
tocols. The first protocol we considered was the blockchain synchronization pro-
tocol called Fastsync. Specifications can be found in English [13] and TLA+ [14].

Fastsync. A full node that connects to a Tendermint blockchain needs to syn-
chronize its state to the latest global state of the network. This network state
is defined by the sequence of blocks that the system has decided upon. These
blocks are numbered continuously, and a block’s number is called its height, and
the height of the most recently added block is called the current height of the
blockchain. Thus, another way to put the blockchain synchronization problem is
the need to catch-up to a recent height of the blockchain. One way to achieve this
is using Fastsync: Initially, the node has a local copy of a blockchain prefix and
the corresponding application state that may be out of date. The node queries
its peers for the blocks that were decided on by the Tendermint blockchain since
the time the full node was disconnected from the system. (Fastsync can be also
used by a fresh node that connects to a blockchain; the node starts with the
genesis file, i.e., the initial block.) After receiving these blocks, the protocol exe-
cutes the transactions that are stored in the blocks, in order to synchronize to
the current height of the blockchain and the corresponding application state.

Figure 1 shows a typical execution of the Blockchain Synchronization pro-
tocol. In this execution, a new node connects to two full nodes: a correct peer
and a faulty peer. The node requests the blockchain heights of the peers by issu-
ing statusReq. Once a peer replies with its height, e.g., with statusRes(10),
the node can request for a block i by sending the message blockReq(i). In
our example, the correct peer receives the request blockReq(1) for block 1 and
replies with the message blockRes(b1) that contains the block. In a Tender-
mint blockchain, the commit (signed votes messages) for block h is contained



Tendermint Blockchain Synchronization 473

node

faulty
peer

correct
peer

sta
tu
sR
eq

statusReq

statusRes(2)

sta
tu
sR
es
(1
0)

blo
ck
Re
q(
1)

blockReq(2)

blockRes(b1)

timeout

blo
ckR

eq
(2)

blockRes(b2)

Fig. 1. A Fastsync execution for a fully unsynchronized node of height 1

in block h+1, and thus a node performing Fastsync must receive two sequential
blocks before it can verify fully the first of them. If verification succeeds, the
first block is accepted; if it fails, both blocks are rejected, as it is unknown which
block was faulty. When the node rejects a block, it suspects the sending peer of
being faulty and evicts this peer from the set of peers. The same happens when a
peer does not reply within a predefined time interval. In our example, the faulty
peer is evicted, and the node finishes synchronization with the correct peer.

The above example may produce an impression that it is easy to specify
and verify correctness of Fastsync. (The authors of this paper thought so.) By
writing several protocol specifications in English and TLA

+ and by running
model checkers, we have found that the specifications are intricate, in particular
due to the presence of faulty peers. Moreover, the intuitive safety and liveness
properties often fail to hold, and one has to refine the temporal formulas used to
encode these properties. This effort significantly improves understanding of the
protocol boundaries and of its guarantees.

2 Architecture

The most recent implementation of the Fastsync protocol, called V2, is the result
of significant refactoring to improve testability and determinism, as described
in the Architectural Decision Record [1]. In the original design, a go-routine
(thread of execution) was spawned for each block requested, and was responsible
for both protocol logic and network IO. In the V2 design, the protocol logic is
decoupled from IO by using three concurrent threads of execution: a scheduler,
a processor, and a demuxer, as per Fig. 2.

Both the scheduler and processor are structured as finite state machines with
input and output events. Inputs are received on an unbounded priority queue,
with higher priority for error events. Output events are emitted on a blocking,
bounded channel. Network IO is handled by the Tendermint p2p subsystem,
where messages are sent in a non-blocking manner. The demuxer routine is
responsible for all IO, including translating between internal events and network
IO messages, and routing events between components.

The task of the scheduler is to ensure that a number of blocks are always
available for verification by the processor. To achieve this, the scheduler tracks



474 S. Braithwaite et al.

Fig. 2. Communication between components in the Fastsync implementation [1].

peers and their heights (via statusReq and statusRes messages and events)
and makes block requests (blockReq) to peers. In order not to overload any one
peer, the block requests are equally spread across the peers. The block responses
(blockRes) are forwarded to the processor (blockReceived) for verification.
The scheduler maintains lists of pending block requests and block responses for
each peer. Peers that (i) are unresponsive, (ii) sent blocks which cause verifi-
cation failure, or (iii) sent unsolicited blocks, are removed, together with any
unprocessed blocks from these peers. In case there are pending block requests
associated with the removed peers, these blocks are requested from other peers.

The processor performs block processing, including verification of consen-
sus signatures and execution of all transactions, which is performed in increas-
ing order of the block height. The blocks that are successfully verified are
stored in Store, and the chain State is updated with the result of transac-
tion execution (cf. Fig. 2). The result of the block processing (blockProcessed
or verificationFailure) is sent to the scheduler via the demuxer routine. The
scheduler keeps track of the block execution height and triggers termination—at
the maximum peer height (finished). Once a node terminates executing Fast-
sync, it continues by executing the Tendermint consensus protocol to stay up to
date with the latest blockchain changes.



Tendermint Blockchain Synchronization 475

3 Specifications in English and TLA+

In addition to protocol verification, we are elaborating a verification-driven devel-
opment process. Our goal is to have a design process that has researchers, ver-
ification engineers, and software engineers in the loop during the design and
development of protocols. Fastsync was the first protocol where we adopted that
process in part. By the time we started our verification efforts, the blockchain
synchronization protocol had already been designed using a classic engineer-
ing process, whose artifacts include architecture decision records and English
specifications that focus on data structures and APIs. There had already been
two implementations of the protocol (V0 and V1), and our software engineer-
ing team was in the process of wrapping-up a third implementation (called V2)
whose primary goal was increased testability.

In this project we started with joint sessions of software engineers, researchers
and verification engineers, in which we wrote first TLA+ specifications together.
In order to better understand how TLA+ can be of most help to us, we then
wrote different specifications that focus, e.g., on the business logic, the local
concurrency architecture of the implementation of V2, and the protocol level; we
published the latter at [14]. While TLA+ specifications provide precise semantics,
we found that English specifications are a valuable tool for communication, both
within the project, but also to others who are interested in the protocols. We
thus developed a structure for English specifications [13]. While in the Fastsync
project, this structured English specification was written after-the-fact, in the
verification-driven development process and our current projects, it is the origin
and deals as reference both for implementations written by the software engineers
as well as for the TLA+specification written by the verification engineers.

We chose TLA
+ for two reasons: (1) We have acquired a good understanding

of the language by developing the Apalache model checker [16], and (2) TLA
+

has been successfully used by systems designers, e.g., at Amazon [5,23].

Structured Specification in English. We start our formalization by a structured
English specification [13], that consists of four parts:

1. Blockchain. Formalization of relevant properties of the chain and its blocks.
2. Sequential problem statement. Here we consider the blockchain as a growing

list of blocks, and define what we expect from the blockchain synchronization
protocol with respect to this list. This specification is sequential. It ignores
that the blockchain is implemented in a distributed system, in which val-
idators may be faulty. Even if they are correct, they locally have prefixes of
different lengths, which introduces uncertainty that has to be reflected in the
distributed protocol as well as in the distributed problem statement.

3. Distributed aspects. Here we introduce the computational model and the
refinement of the sequential problem statement. The computational model
specifies assumptions about the system, such as assumptions on the message
delays, process faults, etc. As a result, the problem statement is restricted
to some fairness constraints, e.g., it is preconditioned by the process being
connected to at least one correct peer.



476 S. Braithwaite et al.

4. Distributed protocol. Specification of the protocol, where we describe inputs,
outputs, variables, and functions used by the protocol. We specify functions
mainly in terms of preconditions, postconditions, and error conditions. Fur-
ther, we provide invariants over the protocol variables. These inform both the
implementation and the verification efforts.

Specifications in TLA
+. The structure of the English specification highlights

interesting properties of the protocols and points to some issues. As it is written
in natural language, the English specification is ambiguous. We have written
three TLA

+ specifications that provide precise semantics, which focus on differ-
ent aspects of the protocol and its architecture:

– High-level specification (HLS). This specification contains the minimal set
of interactions in the synchronization protocol. Its primary purpose is to
highlight safety and termination properties. HLS was mainly written by the
distributed system researchers.

– Low-level specification (LLS). While HLS captures the distributed proto-
col, there was a significant gap between HLS and the implementation. For
instance, the implementation uses additional messages and contains detailed
error codes, which are missing in HLS. The low-level specification is closer to
the implementation. It is mainly written by distributed system engineers.

– Concurrency specification (CRS). As discussed above, the V2 implementation
uses several threads that communicate via queues. To formally capture this,
we wrote a specification that models threads and message queues.

In the following, we focus on the high-level specification in English and
TLA

+ [14]. In Sects. 4–7, we give the main abstractions and insights about
the specifications. The TLA

+ specification has about 800 lines, hence we omit
presenting it in full detail. In addition, it is parameterized by the blockchain
length, and the set of peers. By fixing these parameters, we check its safety and
liveness with TLC [17] and Apalache [16], detailed in Sect. 8.

4 The Blockchain Specification in English and TLA+

A block is a data structure that contains application information (e.g., trans-
actions) as well as metadata needed for the protocols. As we are interested in
the blockchain synchronization, some of this metadata is relevant for our for-
mal model. Figure 3 illustrates three blocks of a Tendermint blockchain. The
blocks are consecutively numbered, and each block is assigned a number, called
its height. As the blocks are a result of consensus by validators, the validity of a
block is confirmed if a quorum of the validators signed (a hash of) a block. The
validator membership in Tendermint changes over time, and is indeed a result
of consensus itself. Moreover, the validators have an associated voting power,
which is not necessarily uniform. For a block, a validator set is a set of pairs of
IDs of validators and their associated voting power. The quorum we referred to



Tendermint Blockchain Synchronization 477

Height �→ 1

Data, AppState, etc.

VS1 �→ p1, p2, p3, p4

NVS1 �→ p1, p2, p3, p4

Votes1 ∅→�
BlockID1

Commit1: LastCommit

B
l
o
c
k

1 Height �→ 2

Data, AppState, etc.

VS2 �→ p1, p2, p3, p4

NVS2 �→ p3, p4, p5, p6

Votes2 �→ p1, p2, p3

BlockID2

Commit2: LastCommit

B
l
o
c
k

2 Height �→ 3

Data, AppState, etc.

VS3 �→ p3, p4, p5, p6

NVS3 �→ p3, p4, p5, p42

Votes3 �→ p2, p3, p4

BlockID3

Commit3: LastCommit

B
l
o
c
k

3

hash

=

Fig. 3. The block structure in Tendermint blockchain. The fields VS and NVS denote
the current and next validator sets of a block. Note that Votes3 contains more than 2/3
of voting power in NVS1.

above thus corresponds to the set of validators that have more than 2/3 of the
total voting power in a given validator set.

To capture this, in a block of height i, the validator set of the current block is
stored in the field VSi, the validator set for the next block is stored in NVSi, and
the signed messages that confirm block i are stored in the field Commiti+1 of
the block at height i+1. The nodes whose signatures are in Commiti+1 must be
a subset of the set VSi of validators at height i. A node running the blockchain
synchronization protocol checks the quorums and signatures in order to locally
confirm whether a downloaded block originates from the blockchain. Therefore,
it is crucial to capture validator sets and commits in our formal specification.

TLA
+ Specification. The blockchain data structures in the implementation are

quite rich. To render model checking possible, we abstract blocks so that the
safety and liveness properties of the protocol are preserved, while the potential
search space becomes finite and relatively small. We call this model Tinychain,
and present it below. A compact version of TLA

+ code is shown in Listing 1.
First, note that in general, the number of blocks on a blockchain may grow

unboundedly. As a result, the field height is also an unbounded integer. Hence,
we parameterize the blockchain with the maximal height MAX HEIGHT in line 3.

Second, the structure of the validator sets is not essential for the protocol. The
few required properties of the blocks, hashes, and validator sets are axiomatized
at an abstract level. Hence, we add two more parameters to the specification
in lines 4–5: VALIDATOR SETS and NIL VS. The parameter VALIDATOR SETS
can be a set of any values, not necessarily sets. We usually define it as a set
of uninterpreted constants, e.g., as {“S1”, “S2”, “S3”}. The parameter NIL VS
encodes an abstract set outside of VALIDATOR SETS, e.g., “Nil”.

Third, the field blockID in a commit and a block hash are needed only to test
block equality, when trying to find out whether a block has been sent by a faulty
or a correct peer. Hence, for every block, instead of its hash and the hash of
the previous block in the commit, we introduce two predicates: hashEqRef and
blockIdEqRef. These predicates restrict the behavior of faulty peers by comparing



478 S. Braithwaite et al.

Listing 1. Abstract blockchain for Fastsync in TLA
+

1 −−−−−−−−−−−−−− module Tinychain −−−−−−−−−−−−−−−−−−−−
2 extends Integers
3 constants MAX HEIGHT, \∗ the maximal number of blocks
4 VALIDATOR SETS, \∗ a set of abstract sets
5 NIL VS \∗ a special abstract set outside of the above set
6

7 IsCorrectBlock(chain, h) �
8 ∧ chain[h].height = h \∗ the height is right
9 ∧ h > 1 ⇒

10 ∧ chain[h].VS = chain[h − 1].NVS \∗ the validators are from the prev. block
11 ∧ chain[h].lastCommit.voters = chain[h − 1].VS \∗ and they are the voters
12

13 IsCorrectChain(chain) �
14 let OkCommits � [blockIdEqRef: {true}, voters: VALIDATOR SETS]
15 OkBlocks � [height: 1..MAX HEIGHT, hashEqRef: {true},
16 wellFormed: {true}, VS: VALIDATOR SETS,
17 NVS: VALIDATOR SETS, lastCommit: OkCommits]
18 in

19 ∧ chain ∈ [1..MAX HEIGHT → OkBlocks]
20 ∧ ∀ h ∈ 1..MAX HEIGHT: IsCorrectBlock(chain, h)
21 =============================================

a block against the reference chain. We explain this in Sect. 6. Finally, we abstract
all simple structure tests with the predicate wellFormed, whose negation models
that a block by a faulty peer does not pass simple consistency tests.

Having the abstract block structure, we define the predicate IsCorrectChain
in lines 13–20 that constrains the block sequence chain. Line 19 restricts chain
to be a function of a block height to a block from OkBlocks, that is, a set of
records that is defined in lines 15–17. (The notation ‘a: B’ constrains the record
field a to range over the set B). Using the predicate IsCorrectChain, we define the
reference chain, to which the correct peers are synchronized.

5 The Blockchain Synchronization Problem in English

Sequential Problem Statement. The synchronization protocol must satisfy:

Sync. Let k be the height of the blockchain at the time Fastsync starts. When
the protocol terminates, it outputs a list of all blocks from its initial height
to some height terminationHeight ≥ k − 1. (Fastsync cannot synchronize
to the maximum height k as in Tendermint, verification of block at height h
requires the commit from the block at height h + 1.)

Liveness. Fastsync eventually terminates.
Safety. Upon termination, the application state is the one that corresponds to

the blockchain at height terminationHeight.



Tendermint Blockchain Synchronization 479

Observe that Sync requires terminationHeight ≥ k − 1. As in Tendermint
the verification of a block at height h requires the commit from the block at
height h + 1, Fastsync cannot synchronize to the height k. Also note that the
blockchain may grow during the execution of Fastsync, that is, its height may
increase before Fastsync terminates. In Sync we require to reach at least the
height of the blockchain when the protocol starts (it is a minimal requirement),
while we allow the protocol to go larger heights in case the blockchain grows.

Distributed Aspects and Faulty Peers. We consider a node FS that performs
Fastsync by communicating with peers from a set PeerIDs, some of which may
be faulty. We assume the authenticated Byzantine fault model [11] in which no
peer (faulty or correct) may break digital signatures, but otherwise, no additional
assumption is made about the internal behavior of faulty peers. That is, faulty
peers are only limited in that they cannot forge messages. We do not make any
assumptions about the number or ratio of correct/faulty peers.

Communication between the node FS and all correct peers is reliable and
bounded in time: there is a message end-to-end delay Δ such that if a message
is sent at time t by a correct process to a correct process, then it will be received
and processed by time t + Δ.

Without the assumption that PeerIDs contains a correct full node, no pro-
tocol can solve the sequential problem. To relax the problem in the unreliable
distributed setting, we consider two kinds of termination (successful and failure).
We specify below under what conditions Fastsync ensures successful termination
and still solves the sequential problem.

Distributed Problem Statement. In the distributed setting, the synchronization
protocol must satisfy:

Sync. Let maxh be the maximum height of a correct peer to which the node is
connected at the time Fastsync starts. If the protocol terminates successfully,
it is at some height terminationHeight ≥ maxh − 1.

Liveness. Fastsync eventually terminates: either successfully or with failure.
Non-abort. If there is one correct process in PeerIDs, Fastsync never terminates

with failure.
Safety. The same as Safety in the sequential problem statement.

In the distributed setting, non-abort in conjunction with liveness ensures
that if there is a correct process in PeerIDs, then Fastsync never terminates
with failure, that is, it will terminate successfully.

6 Correct and Faulty Peers in TLA+

Section 5 introduces a number of assumptions about correct and faulty peers. In
this section, we give an idea about formalization of these assumptions in TLA

+.
The node starts with a finite set of peers, which can shrink when the node
suspects peers of being faulty. The initial set of peers is partitioned into two



480 S. Braithwaite et al.

Listing 2. Alternating composition of the node and peers in TLA
+

1 constants CORRECT, FAULTY, ... \∗ the sets of correct and faulty peers
2 variables state, blockPool \∗ the node’s state variables
3 variables peersState \∗ the peer’s state variables
4 variables turn, inMsg, outMsg \∗ the composition variables
5 /∗ specification of the node and the peers ∗/
6 ...
7 Init �
8 ∧ IsCorrectChain(chain) \∗ initialize the chain up to MAX HEIGHT
9 ∧ InitNode ∧ InitPeers \∗ initialize the node and the peers

10 ∧ turn = ”Peers” \∗ the first turn is by the peers
11 ∧ inMsg = NoMsg \∗ no incoming message from the peers to the node
12 ∧ outMsg = [type �→ ”statusRequest”] \∗ a request from the node to a peer
13

14 Next �
15 if turn = ”Peers”
16 then NextPeers ∧ turn’ = ”Node” ∧ unchanged 〈state, blockPool, chain〉
17 else NextNode ∧ turn’ = ”Peers” ∧ unchanged 〈peersState〉

subsets: CORRECT and FAULTY. As expected, the node specification must not
refer to either of these subsets, as the node is not able to distinguish the faulty
nodes from the correct ones in the distributed setting.
Composition. Listing 2 shows the specification structure. The predicate Init con-
strains the initial states, whereas the predicate Next constrains the transition
relation of the system. We model the distributed system as two components:
the node and its peers. They communicate via two variables: outMsg, that keeps
an output message from the node to a peer, and inMsg, that keeps an input
message from a peer to the node; both variables may be set to None, indicating
that there is no message. The components alternate their steps by flipping the
variable turn: The odd turns belong to the node, and the even turns to the peers.

This approach is simple yet powerful. On one hand, it dramatically decreases
the state space, as there are no queues, and alternation produces significantly
fewer states than the disjunction, which would correspond to interleaving:
NextNode ∨ NextPeers. On the other hand, it does not decrease precision, as
the peers consume and produce messages independently of one another. More-
over, this approach allows us to easily formulate fairness in the system as weak
fairness over the variable turn.

Correct Peers. The correct peers non-deterministically send their status (the
chain height) to the node and respond to its requests. For example, if the node
requests a block of height 5 from a peer “c3”, the peer “c3” sends its block. The
peers may also join and leave the network. We omit the technical details.

Faulty Peers. The faulty peers are authenticated Byzantine: In addition to the
behavior of the correct peers, they may send unsolicited or corrupt messages, or



Tendermint Blockchain Synchronization 481

ignore the requests. As discussed in Sect. 4, the blockchain uses hashes, which
limits the power of the faulty peers in sending blocks. This is where the hashing
predicates come into play. The essential piece of TLA

+ code is given below:

1 SendBlockResponseMessage(...) �
2 ∨ ... \∗ a response by a correct peer to a node’s request
3 ∨ ∃ peerId ∈ FAULTY: \∗ a faulty peer can always send a block
4 ∃ block ∈ Blocks:
5 ∧ block.height = height \∗ height mismatch is easy to detect
6 ∧ block.hashEqRef ⇒ block = chain[height] \∗ no hash forging
7 ∧ (height > 1 ∧ block.lastCommit.voters = chain[height − 1].VS)
8 ⇒ block.lastCommit.blockIdEqRef \∗ no equivocation by the validators
9 ∧ inMsg’ = [type �→ ”blockResponse”, peerId �→ peerId, block �→ block]

10 ∧ ...

Line 6 forces a faulty peer to produce the block as on the chain, when the
predicate block.hashEqRef holds true, that is, the block hash matches the hash
of the reference block on the chain. This is exactly the semantics of a perfect
hash. Line 8 is perhaps less obvious. Intuitively, it says that if the block contains
a commit for the previous block, and the voters in the commit coincide with the
validators of the previous block on the chain, then the hash in the commit must
be equal to the hash of the previous block on the chain. (The implementation
tests whether voters constitute over 2/3 of the VS voting power. However, we find
our approximation sufficient for model checking.) Importantly, with Boolean
hashEqRef and blockIdEqRef, we model the scenarios: (1) the hashes are equal
to the reference hash; (2) the hashes are equal to a number different from the
reference hash; and (3) the hashes are not equal.

7 The Node Protocol in English and TLA+

Recall Fig. 1, that shows a typical execution of Fastsync. Using statusReq, the
node FS asks a peer about its current height, that is, the length of the prefix
of the blockchain the peer has stored. Each peer responds with statusRes(h),
where h is its current height. By collecting these responses, FS gets information
about which peer has which blocks, and uses this information (1) to compute its
target height (the maximum height its peers know of) and (2) to decide which
blocks to request from which peer. It requests a block of height h from a peer
by sending blockReq(h), and a peer responds by sending blockRes(bh), that
contains a block of height h. FS stores all the received blocks locally, and checks
all the signatures and hashes to make sure that there are no invalid blocks that
could have been provided by faulty peers.

As the implementation uses external events (message reception) and timeouts
to make progress, we have chosen to describe the model in terms of the following
functions, that are triggered by events:

QueryStatus(): regularly (at least 2Δ, now 10 s) queries all peers from PeerIDs
for their current heights by sending statusReq to all peers.



482 S. Braithwaite et al.

CreateRequest(): regularly checks whether certain blocks have no open
request. If a block does not have an open request and its height is h, FS
requests one from a peer. It does so by sending blockReq(h) to one peer.

In our specification, we leave the strategy of peer selection unspecified. Var-
ious implementations of Fastsync differ in this aspect. Version V2 (see Sect. 2)
selects a peer p with the minimum number of pending requests that can serve
the required height h, that is, whose height is greater than or equal to h.

When the messages statusRes(h) or blockRes(b) are returned from the
peer at address addr, the following functions are called, respectively:

OnStatusResponse(addr Address, h int): The full node with address addr
returns its current height. The function updates the height information about
addr, and may also increase the target height.

OnBlockResponse(addr Address, b Block): The full node with address
addr returns a block. It is added to blockstore. Then the auxiliary function
Execute is called.

Execute(): Iterates over the received blocks. It checks soundness of the blocks
(hashes, signatures, etc.), and executes the transactions of a sound block and
updates the application state.

FS keeps track of several performance metrics: the last time a peer responded,
the throughput to a peer, etc. If a peer p has not provided a block recently
or it has not provided a sufficient amount of data, then p is removed from
PeerIDs. Fastsync V2 schedules a timeout whenever a block is executed, that is,
when the height is incremented. If the timeout expires before the next block is
executed, Fastsync terminates. If this happens, then Fastsync terminates with
failure. Otherwise it terminates successfully when it reaches the target height.

We omit the details about the other functions. Figure 4 shows an example of
how we specify functions in the English specification. Rather than using pseudo
code, we specify functions mainly using preconditions and postconditions. They
have a clear meaning to verification engineers, but also give the software engi-
neers a precise understanding of what the function should do without restricting
them in how to satisfy these requirements in the source code.

TLA
+ Specification. We omit technical details of encoding the node communi-

cation. The implementation V2 relies on several timeouts to guarantee termina-
tion. Although precise modeling of time and timeouts is possible in TLA

+ [20],
it obviously leads to state explosion. Hence, we simply model timeouts with
non-determinism and weak fairness.

Listing 3 shows the block verification logic. Interestingly, VerifyCommit checks
the predicates commit.blockIdEqRef and block.hashEqRef. There are two valid
options with respect to the hash hash of the reference block: Either both the
hashes are equal to hash, or they are both different from hash.



Tendermint Blockchain Synchronization 483

func OnBlockResponse(addr Address, b Block)

– Comment
• if after adding block b, blocks of heights height and height+1 are in blockstore,

then Execute is called
– Expected precondition

• pendingblocks(b.Height) = addr
• b satisfies basic soundness

– Expected postcondition
• if function Execute has been executed without error or was not executed:

receivedBlocks(b.Height) = addr
blockstore(b.Height) = b
peerT imeStamp[addr] is set to a time between invocation and return of
the function.
peerRate[addr] is updated according to size of received block and time
passed between current time and last block received from this peer (addr)

– Error condition: if precondition is violated: addr not in PeerIDs; reset
pendingblocks(b.Height) to nil;

Fig. 4. Example of a function definition in the English specification

Listing 3. Block execution logic in TLA
+

1 VerifyCommit(block, commit) �
2 commit.voters = block.VS ∧ commit.blockIdEqRef = block.hashEqRef
3

4 ExecuteBlocks(pool) �
5 ... \∗ get stored blocks b0, b1, b2 for heights h−1, h, h+1
6 if b1 = Nil ∨ b2 = Nil \∗ no two next consecutive blocks
7 then pool
8 else if b0.NVS �= b1.VS ∨ ¬VerifyCommit(b0, b1.lastCommit)
9 then RemovePeers({Sender(b1.height)}, pool)

10 else if ¬VerifyCommit(b1, b2.lastCommit)
11 then RemovePeers({Sender(b1.height), Sender(b2.height)}, pool)
12 else [pool EXCEPT !.height = pool.height + 1]

8 Model Checking with TLC and Apalache

While developing TLA
+ specifications, we were using TLA

+ Toolbox and the
model checker TLC [17]. We also checked the safety properties with the new
symbolic model checker Apalache [2,16]. So far, we have checked the specifi-
cations for tiny parameters, such as 1 to 3 peers and Blockchain height from 3
to 5. Table 1 summarizes the results and running times of TLC and Apalache.
A central temporal property is the protocol’s Termination:

wfturn(FlipTurn) ⇒ �(state = “finished”)

where wfx(A) in TLA
+ forces weak fairness of action A, if it changes x.



484 S. Braithwaite et al.

In 7 min, TLC finds a bug: Faulty peers may keep the node busy by sending
blocks or joining and leaving the network. The more precise property Termina-
tionByTO states that the protocol terminates, if there is a global timeout:

WFturn(FlipTurn) ∧ �(inMsg.type = “syncT imeout”

∧ blockPool.height ≤ blockPool.syncHeight) ⇒ �(state = “finished”
)

In this case, TLC finds no bug, though it does not finish state exploration.
(We did not run Apalache, as it only supports safety.) We found that it is
extremely hard to formulate the “normal” termination property in the presence
of faults, i.e., without involving a timeout. We also formulated the property Ter-
minationCorrect: The protocol terminates without a timeout, provided that all
peers are correct. TLC exhaustively proves this property for one correct peer.

The more interesting property is “synchronization”, whose intuitive meaning
is that by the time Fastsync terminates, it reaches the height of the blockchain.
Let us formalize this as Sync1: To see that our modeling is precise, we start with
a property that is slightly wrong, namely, when the protocol finishes, it reaches
the maximum height among the heights of the correct peers, i.e.,

�(
state = “finished” ⇒ blockPool .height ≥ MaxCorrectPeerHeight(blockPool)

)

Both model checkers report counterexamples. One reason is that to verify a
block h, one needs the commit signatures from block h + 1. We also observe,
that the node running Fastsync is not always connected to correct peers. Hence,
we fix it in Sync2, by stating that height MaxCorrectPeerHeight(blockPool) − 1
should be reached when the node is connected to correct peers. This property also
fails. This time we observe that a global timeout — that guarantees Termination-
ByTO— may terminate Fastsync before it has reached the maximal height. We
add a precondition for “no timeout”, and call the property Sync3. Neither TLC,
nor Apalache produce a counterexample (for executions up to 20 steps).

We formulated the invariant CorrectBlocks: The synchronized blocks have
enough votes and contain correct signatures and hashes (the correct peers pro-
duce only the blocks that satisfy this property). By running Apalache, we found
that this property was violated by the specification. After code inspection, we
realized that the implementation executes an extra consistency test that was not
captured in the specification (as it was not clear that it is part of the protocol).
After fixing the specification, we have found no further counterexamples.

Both model checkers quickly find counterexamples for the following two prop-
erties that might appear to be correct. SyncFromCorrect states that the accepted
blocks originate only from the correct processes. This property fails, as it does
not account for the cases where faulty peers behave correct in an execution pre-
fix (before showing faulty behavior). NoSuspectedCorrect states that the correct
peers are never removed from the peer set. This would be a desirable property,
but the current implementation V2 does not guarantee it.

Finally, TLC is quite fast when checking properties in the configuration with
one correct peer. However, adding just one faulty peer blows up the state space,



Tendermint Blockchain Synchronization 485

Table 1. Model checking results for TLC and apalache against the high-level speci-
fication for 1 correct peer, 0/1 faulty peers, and 4 blocks. The experiments were run in
an AWS instance equipped with 32GB RAM and a 4-core Intel® Xeon® CPU E5-2686
v4 @ 2.30GHz CPU. The notation: ✗ for “found a bug at depth k”, [✓]<k for “found
no bug up to depth k”, ✓ for “correct” (exhaustive search), TO for “timeout” (24 h).

which prevents TLC from finishing state exploration. In this case Apalache

performs better. However, it runs bounded model checking, which gives us only
bounded safety, that is, up to the predefined execution length.

9 Conclusions and Future Work

We approach this work with a process-oriented goal in mind: By Verification-
Driven Development [15] we understand a design process for distributed systems
that makes it easier to test and verify the software. The re-design of the Fastsync
protocol that resulted in a decomposition into state machines should be under-
stood under this aspect. The English and the TLA

+ specifications are artifacts of
this design process, and are means of communication between researchers, soft-
ware engineers, and verification engineers. The structured English specification
strikes a balance between mathematical rigor and readability. It serves as a base
for (i) formal verification efforts in TLA

+, that provide precise semantics, and
(ii) implementations. The annotations with invariants, pre- and postconditions
are very helpful for the software engineers to guide the implementation.

The gap between informal English specifications, and formal TLA
+ specifica-

tions and the implementations is still a research challenge. As future work we will
consider semi-formal methods that address this formalization gap. For instance,
we have found that the distributed system engineers have a hard time specify-
ing precise liveness properties, which truly requires one to think about temporal
operators. Specifying fairness is the most challenging specification task in case
of fault-tolerant distributed systems. Instead of asking the engineers to write
the temporal properties directly, we could instantiate specification patterns [4]
that collect the most-often occurring shapes of temporal formulas. This can be



486 S. Braithwaite et al.

done with the help of graphical tools such as ProPas [12]. In a more general
setting, we could use the boilerplates approach offered by CESAR [3]. This is
a specification method that uses restricted English grammar, where a designer
selects the boilerplates that fit the specific requirement, and fills the details to
arrive at a complete specification.

The formalization also led to a better understanding of the liveness prop-
erties that we expect and want from blockchain synchronization protocols, and
to an improved awareness regarding the differences between the current imple-
mentations (Fastsync V0, V1, and V2). We have found several liveness issues
that come from unexpected behavior of faulty peers. For instance, rather than
reporting bad blocks, faulty peers may be very slow in reporting good blocks.
If they report them slower than the blockchain grows, but fast enough to not
lead to a timeout at the node, V2 may never terminate. This highlights that a
vital requirement had not been captured before, namely, a relationship between
timeout duration, block generation rate, and message end-to-end delays. As this
issue is closely related to real-time, we are not able to directly capture it and
reproduce it with TLA

+. However, TLA
+ counterexamples and the English

specifications helped us in isolating this scenario.
For safety verification, we can replace a timeout by a non-deterministic event

that may occur at any time. For liveness, we have to treat the relation of timeouts
to message delays and processing times precisely. The extensive use of timeouts
in the current implementation poses future research challenges to liveness verifi-
cation. Some of our current research questions are: How to limit timeouts in the
implementation? What is the most effective way to use timeouts in the imple-
mentation in order to stay precise in the verification? How can we capture the
relation of the (local) timeouts to (global) message delays in model checking?

The counterexamples produced by the model checkers were quite helpful in
understanding and refining the protocol properties. After refining the protocol
with small hashes, which resulted in a larger state space, TLC could not reach
error states within the reasonable time frame of one hour. In contrast, Apalache

was finding errors within 10 min, which was still interactive enough for us. Once
we felt confident in the protocol after debugging it with Apalache, we shrinked
the state space by introducing Boolean abstraction of hashes, allowing TLC to
also report errors. As future work, we plan to find an inductive invariant and
prove its correctness with Apalache (for fixed but larger parameters).

The language of TLA
+ built around refinement [19,21]. In the classical app-

roach, one starts with an abstract specification A of a protocol and produces
a more detailed specification C. To show refinement, the user substitutes the
variables of A with expressions over the variables of C, which results in a speci-
fication γ(A), and then proves that the behaviors of C can be replayed by γ(A).
It suffices to prove two statements: (1) the initial states of C are a subset of the
initial states of γ(A), formally, C!Init ⇒ γ(A)!Init ; and (2) the transitions of C
are a subset of the transitions of γ(A), formally, C!Next ⇒ γ(A)!Next . To prove
the steps (1) and (2) for all values of the parameters, the user has to use TLA

+

Proof System [10]. To debug the statements (1) and (2) for small parameters,
one can use the model checkers TLC and Apalache.



Tendermint Blockchain Synchronization 487

In our case, the design flow was in the opposite direction. We started with
the existing implementation and wrote several specifications of the protocol
in TLA

+. Technically, we could construct a refinement mapping between the
low-level specification and the high-level specification and check it with the
model checkers for the small parameters. However, the potential feedback from
this step seemed to be negligible, in comparison to checking safety and liveness of
the protocol. A more pressing issue for us is how to establish conformance of the
protocol implementation (in Google Go) to the TLA

+ specification. To this end,
we are currently developing a model-based testing tool, which produces system
tests out of TLA

+ traces, as generated by TLC and Apalache as output.
An alternative approach would be to use Ivy [22] instead of TLA

+ tools.
The authors of Ivy demonstrated how one can do refinement and parameterized
verification of consensus protocols with their tool. Their approach requires cre-
ative massaging of the specification with the goal of simplifying the SMT theory
and transforming the constraints in the EPR form. We found that is much easier
to explain TLA

+ to the engineers than uninterpreted first-order logic. It would
be great to unite the clarity of TLA

+ and effectiveness of Ivy.

References

1. ADR 043: Blockhchain reactor riri-org (2020). https://github.com/tendermint/
tendermint/blob/master/docs/architecture/adr-043-blockchain-riri-org.md

2. APALACHE: a symbolic model checker for TLA+ (2020). https://github.com/
informalsystems/apalache/. Accessed 10 Aug 2020

3. Arora, C., Sabetzadeh, M., Briand, L.C., Zimmer, F., Gnaga, R.: Automatic check-
ing of conformance to requirement boilerplates via text chunking: an industrial case
study. In: ESEM (2013)

4. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: FMSP, pp. 7–15 (1998)

5. Brooker, M., Chen, T., Ping, F.: Millions of tiny databases. In: USENIX, pp. 463–
478 (2020)

6. Buchman, E.: Tendermint: Byzantine fault tolerance in the age of blockchains.
Master’s thesis, University of Guelph (2016). http://hdl.handle.net/10214/9769

7. Buchman, E., Kwon, J.: Cosmos whitepaper: a network of distributed ledgers
(2016). https://cosmos.network/resources/whitepaper

8. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. arXiv
preprint arXiv:1807.04938 (2018). https://arxiv.org/abs/1807.04938

9. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437 (2017)

10. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.:
TLA+ proofs. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol.
7436, pp. 147–154. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32759-9 14

11. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

12. Filipovikj, P., Seceleanu, C.: Specifying industrial system requirements using spec-
ification patterns: a case study of evaluation with practitioners. In: ENASE, pp.
92–103 (2019)

https://github.com/tendermint/tendermint/blob/master/docs/architecture/adr-043-blockchain-riri-org.md
https://github.com/tendermint/tendermint/blob/master/docs/architecture/adr-043-blockchain-riri-org.md
https://github.com/informalsystems/apalache/
https://github.com/informalsystems/apalache/
http://hdl.handle.net/10214/9769
https://cosmos.network/resources/whitepaper
http://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1710.09437
https://doi.org/10.1007/978-3-642-32759-9_14
https://doi.org/10.1007/978-3-642-32759-9_14


488 S. Braithwaite et al.

13. Informal Systems: Fastsync - English specification (2020). https://github.com/
informalsystems/tendermint-rs/blob/master/docs/spec/fastsync/fastsync.md

14. Informal Systems: Fastsync - TLA+ specification (2020).https://github.com/
informalsystems/tendermint-rs/blob/master/docs/spec/fastsync/fastsync.tla

15. Informal Systems: Verification-Driven Development: An Informal Guide (2020).
https://github.com/informalsystems/VDD/blob/master/guide/guide.md

16. Konnov, I., Kukovec, J., Tran, T.: TLA+ model checking made symbolic. PACMPL
3(OOPSLA), 123:1–123:30 (2019)

17. Kuppe, M.A., Lamport, L., Ricketts, D.: The TLA+ toolbox. In: F-IDE@FM 2019,
pp. 50–62 (2019)

18. Kwon, J.: Tendermint: consensus without mining. Draft v. 0.6, fall 1(11) (2014)
19. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley (2002)
20. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.

(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005).
https://doi.org/10.1007/11560548 14

21. Lamport, L.: Byzantizing Paxos by refinement. In: Peleg, D. (ed.) DISC 2011.
LNCS, vol. 6950, pp. 211–224. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24100-0 22

22. McMillan, K.L., Padon, O.: Ivy: a multi-modal verification tool for distributed
algorithms. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
190–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8 12

23. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon web services uses formal methods. Comm. ACM 58(4), 66–73 (2015)

24. Tendermint Inc.: Cosmos hub (2020). https://hub.cosmos.network
25. Tendermint core, reference implementation in Go (2020). https://github.com/

tendermint/tendermint
26. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: BFT con-

sensus with linearity and responsiveness. In: PODC, pp. 347–356 (2019)

https://github.com/informalsystems/tendermint-rs/blob/master/docs/spec/fastsync/fastsync.md
https://github.com/informalsystems/tendermint-rs/blob/master/docs/spec/fastsync/fastsync.md
https://github.com/informalsystems/tendermint-rs/blob/master/docs/spec/fastsync/fastsync.tla
https://github.com/informalsystems/tendermint-rs/blob/master/docs/spec/fastsync/fastsync.tla
https://github.com/informalsystems/VDD/blob/master/guide/guide.md
https://doi.org/10.1007/11560548_14
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-030-53291-8_12
https://hub.cosmos.network
https://github.com/tendermint/tendermint
https://github.com/tendermint/tendermint

	Tendermint Blockchain Synchronization: Formal Specification and Model Checking*-6pt
	1 Introduction
	2 Architecture
	3 Specifications in English and TLA+
	4 The Blockchain Specification in English and TLA+
	5 The Blockchain Synchronization Problem in English
	6 Correct and Faulty Peers in TLA+
	7 The Node Protocol in English and TLA+
	8 Model Checking with TLC and Apalache
	9 Conclusions and Future Work
	References




