
Survey of Formal Verification Methods for

Smart Contracts on Blockchain

Yvonne Murray1 and David A. Anisi1,2

Abstract—Due to the immutable nature of distributed ledger
technology such as blockchain, it is of utter importance that a
smart contract works as intended before employment outside
test network. This is since any bugs or errors will become
permanent once published to the live network, and could lead
to substantial economic losses; as manifested in the infamous
DAO smart contract exploit hack in 2016. In order to avoid this,
formal verification methods can be used to ensure that the contract
behaves according to given specifications. This paper presents a
survey of the state of the art of formal verification of smart
contracts. Being a relatively new research area, a standard or
best practice for formal verification of smart contracts has not yet
been established. Thus, several different methods and approaches
have been used to perform the formal verification. The survey
presented in this paper shows that some variant of model checking
or theorem proving methodology seems to be most successful.
However, as of today, formal verification is only successful on
simple contracts, and does not support more advanced smart
contract syntax.

Index Terms—formal verification, formal methods, theorem
proving, model checking, smart contracts, Ethereum, blockchain

I. INTRODUCTION

As it is nearly impossible to alter what has been added

to a blockchain, it is crucial that smart contracts are written

correctly from the beginning. Formal verification is a tool to

verify the logic of a code and make sure that it works in

accordance with specification in every situation. To contrast,

traditional test-based quality assurance has the disadvantage

that it is impossible to test for every single input, series

of input and outside conditions in open systems. Thus, an

unforeseen input, condition or incident could give errors that

will never be discovered by normal testing. Formal verification

instead checks the logic of a mathematical model, using proofs,

theorems and lemmas, in order to prove the validity of a

certain mathematical specification. After checking that the logic

in the mathematical model is correct, a conforming program

can be written. It is a time consuming process, but should

be considered for important pieces of code, as for example

smart contracts, where the consequence of an error could be

great, as manifested in the infamous Decentralized Autonomous

Organization (DAO) smart contract exploit hack in 2016 [1].

A. Objective and Contributions

This paper provides an overview of the current state of

the art regarding formal verification of smart contracts. After

1 Dept. of Mechatronics, Faculty of Engineering and Science, University of
Agder (UiA), Grimstad, Norway, yvonne.murray@uia.no

2Dept. of Technology & Innovation, Industrial Automation Division, ABB,
Oslo, Norway, david.anisi@no.abb.com

giving some background about smart contracts and formal

verification methods in Section II, the research that has been

done will be presented and evaluated in Section III. Section IV

will sum up the main results and discuss the importance of

formal verification for smart contracts, and how it can achieve

wider acceptance and adoption. Finally, Section V will give a

short conclusion and suggestions for future work.

II. BACKGROUND

This section will give an introduction to some material that

is important for understanding the remaining of this paper. It is

expected that the reader has some prior knowledge about basic

blockchain functionality and features [2].

A. Smart Contracts

At its foundation, a smart contract is simply a piece of

code [1] running in a host environment, setting up an agreement

between two or more parties, including conditions that have to

be met before execution. When the predefined conditions are

met, the smart contract executes to produce the output. A simple

example could be using a smart contract for a payment at a

specified date. When the date arrives, the predefined condition

is met, and the payment is transferred automatically.

By running a smart contract on a distributed ledger like

blockchain, it gains all the advantages of such technology

and becomes irreversible, safe from tampering and the entire

network can inspect the execution. There is no need for a trusted

third party. The identities of the parties are kept pseudonymous,

but the bytecode of the contract is visible for the entire network.

Smart contracts can be used to automate several different

processes, not only payments. Examples of fields that could

benefit from smart contracts are insurance, real estate, supply

chains, data recording, identity management and voting. With

the growth of the Internet of Things, smart contracts could also

play a central role in machine-to-machine interaction [1].

Currently, the main platform for smart contracts is Ethereum.

There, one of the languages used to script smart contracts

is called Solidity, which is a high-level language specifically

designed for smart contracts [1]. Solidity is influenced by

common languages like C++, Python and JavaScript, and

supports features like inheritance, libraries and user-defined

types.

The basic steps for execution of a smart contract are:

1) Coding the predefined conditions and the outcomes

2) Adding the smart contract to the blockchain

978-1-7281-1542-9/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: AMRITA VISHWA VIDYAPEETHAM AMRITA SCHOOL OF ENGINEERING. Downloaded on March 08,2022 at 17:20:42 UTC from IEEE Xplore. Restrictions apply.

3) Once the conditions are met, the contract executes and

triggers the outcomes

During step 1, a formal verification would be beneficial, so that

errors do not become permanent on the blockchain.

B. Formal Verification Methods

Formal verification differs from normal testing in the follow-

ing ways:

• It is performed during the design process, while testing is

performed after the code has been written.

• It ensures that the design itself is correct, while testing

checks that the intended design has in fact been imple-

mented without errors.

• It is practically impossible to test for every single input,

series of input, unexpected events or outside conditions.

By formally verifying the system in the design process, it

can be verified that the system works as expected in every

situation.

There are several different methods for formal verification,

each with their own strengths and weaknesses. The most used

in the field of smart contracts are theorem proving and model

checking.

1) Theorem Proving: Theorem proving is applicable to

many different kinds of systems, and is therefore widely used

for formal verification [3]. The system is modeled mathemat-

ically, and the desired properties to be proven are specified.

Then, the verification is performed on a computer, using a

theorem prover software. For the verification process, the

theorem prover uses well-known axioms and simple inference

rules, and every new theorem or lemma needed for the proof

are derived from them [3]. Theorem proving is a very flexible

verification method, since it is applicable on all systems that

can be expressed mathematically [3].

Theorem provers can be interactive, automated or a hybrid

between the two [3]. As the names suggest, the automated

ones perform the theorem proving automatically, while the

interactive ones might require some human input. For both of

them, the system model and the specifications must be set up

manually. The hybrid theorem provers provide the possibility

to partition the system model based on the complexity level.

Then, the least complex parts can be verified with automated

theorem proving, while the most complex parts are verified with

interactive theorem proving.

Whether it is possible to use automated theorem proving,

or if it has to be interactive, depends on the complexity of the

system. The complexity of the system decides how complicated

the logic has to be in order to create an accurate model. For

some simple systems, propositional logic, or statement logic,

can be sufficient. Propositional logic consists of declarative

sentences or statements, which can be true or false [4]. Different

statements can be combined or modified by using Boolean

operators, like and (∧), or (∨) and not (¬), or by using

implication or equivalence. Propositional logic is decidable,

which means that it can be verified automatically by automated

theorem proving. However, it has a limited field of application

since it cannot correctly represent all kinds of system. First-

order logic contains every element from propositional logic, but

also adds the possibility to use quantifiers [4]. The quantifiers

used in first-order logic are for all (∀) and there exists (∃).

Additionally, there is the possibility to use predicates, which

are functions that return true or false, and to declare constants,

function names and free variables. This makes first-order logic

more expressive, and suitable for more kinds of system. The

use of quantifiers makes it possible to express statements using

some, all, at least or at most. Figure 1 shows some examples

of what can be expressed with first-order logic [4].

Fig. 1. Examples of statements in first-order logic, from [4].

The expressiveness of first-order logic is also the reason

why it is not completely decidable. That means that not all

statements expressed in first-order logic can be automatically

verified by a theorem prover. As a result, some formulas might

have to be verified interactively by the user [3]. To interact

with the theorem prover, the user provides proof tactics in Meta

Language (ML), which is a functional programming language

that represents the higher-order logic. For theorem proving, the

most expressive logic is higher-order logic (HOL). Higher-order

logic allows the use of quantifiers over sets and functions [4].

It can describe any system, given that its behavior is closed-

form, meaning that it can be evaluated in a finite number of

operations. HOL is not decidable, which implies that user input

and verification is needed in addition to the theorem prover [3].

2) Model Checking: Model checking is a method for formal

verification that is suitable for systems that can be expressed

by a finite-state model [3]. The verification is performed on a

computer, using a model checking software. The user provides

the model checker with a finite-state model of the system, and

a formally specified property it should possess. The model

checker then checks if each state of the model satisfies the

specification. Every system scenario is examined. If it does

not satisfy the property, a counter example is provided, which

shows a run of the system that violates the property. This

is useful to identify mistakes and correct bugs. On the other

hand, if each state of the model does satisfy the specification,

the model is formally verified for that specific property. An

illustration of the procedure can be seen in Figure 2.

The model checker itself is automatic, but is dependent on

an accurate model and property specification in order to give

a usable result.

Authorized licensed use limited to: AMRITA VISHWA VIDYAPEETHAM AMRITA SCHOOL OF ENGINEERING. Downloaded on March 08,2022 at 17:20:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Procedure for model checking. Figure from [5].

III. STATE OF THE ART

This section will present the state of the art for formal

verification of smart contracts. The research field is relatively

new, which means that there is no established standard for

the procedure. Thus, several different approaches have been

explored. Since Ethereum is currently the leading platform

for smart contracts, most of the research has been focused

on formal verification of Ethereum smart contracts, which are

mostly written in the language Solidity.

This section is divided into subsections, each presenting

an influential and important research paper concerning formal

verification of smart contracts. It should be noted that the title

of the subsections do not necessarily equal that of the papers.

A. Formal Verification by Translation to F* [6]

A group of researchers from Microsoft Research and Harvard

University made an effort to formally verify smart contracts by

translating the contract code to F*. They made a prototype of

two tools, Solidity* and EVM*, that can assist in language-

based verification by translating Solidity and EVM bytecode

contracts respectively to F*.

Even though Solidity* translates Solidity to F*, it is im-

portant to note that it does not support all Solidity syntax. A

specification of the syntax that is supported can be found in [6],

and is only a fragment of the complete syntax. Most notably,

the translation does not support loops, but does however support

recursion. After the translation, F* typechecking is used to

detect vulnerable patterns in the code, and it is possible to

verify different properties of the translated functions. Out of

396 contracts, 46 were successfully translated and typechecked,

and there was discovered problems with reentrancy and some

unchecked returns of send calls.

EVM* is a tool that decompiles EVM bytecode to F*. The

bytecode is the code that is stored on the blockchain, and is

therefore often more accessible than the Solidity source code.

The translation from EVM* allowed for analysis of low level

properties.

The researchers conclude that F* seems to be flexible enough

to verify important properties of smart contracts. However, the

results are still preliminary, and the suggested approach can

not handle all of the Solidity syntax. This is a huge limitation,

but as stated in the conclusion of the paper: ”Our approach,

based on shallow embeddings and typechecking within an

existing verification framework, is convenient for exploring the

formal verification of contracts coded in Solidity and EVM

bytecode” [6].

B. Towards Formal Verification in Isabelle/HOL [7]

A group of researchers from Australia and France chose

an approach for formal verification where the bytecode of the

contract was verified in the generic interactive theorem prover

Isabelle/HOL. The goal was to create a sound logic for both

the requirements and the code. To achieve that, the contracts

were split into so-called basic blocks, and the resulting program

logic was used for verification.

To split the contract into basic blocks, the bytecode was de-

compiled in order to extract Control Flow Graphs (CFG). In

this case, basic blocks, which consist of code sequences that are

not interrupted by jumps, are the vertices of the graph. They

are connected by edges, which represent the jumps. In this

way, each basic block is a sequential piece of code, where the

first instruction is executed first, and it continues uninterrupted

until the last instruction of the basic block is finished. The

basic blocks are further divided into different types, depending

on the last instruction of the block. The types are Terminal,

Jump, Jumpi and Next. An example of a program split into

basic blocks can be seen in Figure 3.

Fig. 3. A simplified program split into four basic blocks. Courtesy of [7].

After obtaining the basic blocks, Hoare logic is used as

a foundation to create the program logic. Hoare triples are

specifically designed for reasoning about program correctness,

and is written on the form:

{P} S {Q} (1)

where P is the precondition, Q is the post-condition and S is

a program, or in this case a basic block. If we start in a state

where P is true and then execute S, S will terminate in a state

where Q is true. Using the basic blocks and the Hoare triples,

logical rules for the code were formulated at program level,

block level and instruction level. As a result, a framework was

Authorized licensed use limited to: AMRITA VISHWA VIDYAPEETHAM AMRITA SCHOOL OF ENGINEERING. Downloaded on March 08,2022 at 17:20:42 UTC from IEEE Xplore. Restrictions apply.

created for expressing the EVM bytecode using logic, which

is necessary in order to use a theorem prover for verification.

The entire verification procedure, from creating a logical model

from the code to formally verifying it with Isabelle/HOL, was

successfully applied to a case study. However, the framework

does not support all of the Solidity syntax. For instance, loops

and message calls to other contracts are currently not supported.

C. Model checking of Smart Contracts [8]

In [8], a method for formal verification of a smart con-

tract based application, using model checking is proposed.

A symbolic model checker called NuSMV was used. The

system model consists of three different layers: 1) Ethereum

blockchain, 2) smart contract, and 3) application execution

environment.

The Ethereum blockchain model has been greatly simplified

as it simply consists of clients, or accounts, and transactions.

According to the researches, this simplified model is sufficient

for verification of smart contracts. However, to check the be-

havior over time, the model would also need to add for instance

the ledger, blocks, miners and gas. In order to model the smart

contract, the Solidity code was translated to the NuSMV input

language. A set of translation rules are presented in the research

paper to translate simple smart contracts. However, the provided

translation is not suitable for advanced smart contracts, and

the NuSMV language has some limitations that prevent more

advanced rules to be systematized. It is not specified which

attributes that separates a simple contract from a complex one.

Lastly, the specification to be verified is formalized into logic,

and the model checking is performed by NuSMV.

A case study was successfully carried out to illustrate the ap-

proach, and five code specifications were formalized in logic, in

order to test some key properties. By using the model checking

approach, four out of the five properties were formally verified.

The last property was not satisfied, and thus a counterexample

was presented by the model checker. However, NuSMV has

some language limitations that makes it unsuitable for complex

contracts.

D. Formal Verification Based on Users and Blockchain Behav-

ior Models [9]

In [9], the authors present a new way of modeling smart

contracts and also a way to model the blockchain and user

behavior. These new approaches were applied to a name register

smart contract, which was then formally verified by using

model checking.

The full model used in the formal verification can be seen in

Figure 4. In addition to normal user behavior and the contract

itself, it models a simple blockchain and hacker behavior.

The goal of the hacker is to steal the identity of the user

by registering with their own account. Three scenarios are

evaluated in order to determine the probability of the user and

hacker to successfully register the username. In scenario 1, the

user has already registered, and the hacker finds the username

from the mined block. In scenario 2, the hacker finds the

username from a pending transaction which has not been mined

yet. In scenario 3, the hacker finds the username directly from

the user call to the contract.

Fig. 4. Model of a user execution of the register smart contract, also taking
blockchain and hacker behavior into account. Courtesy of [9].

Using the model checker in Behaviour Interaction Priorities

(BIP) to verify the probabilities, the following results were

obtained:

• As expected, in scenario 1 the hacker has 0% success

probability. The username is already registered for the

user, and is immutable on the blockchain. The smart

contract behaves correctly and rejects the hacker to register

the same username.

• In scenario 2, the hacker has a 12% success probability

since the miners decide which transactions to mine, which

means that the hacker transaction can possibly be mined

first.

• In scenario 3, the hacker has a 25% success probability.

The hacker finds the username before the contract has

received the call, thus increasing the chances of success.

The conclusion of the researchers is that the modeling tech-

nique can provide a good formalization of smart contracts, and

that it can be used to find vulnerabilities that would not have

been discovered without modeling user behavior. Using a model

checker for formal verification, some scenarios vulnerable to

hacking were discovered.

E. Verification using Game Theory and Formal Methods [10]

In [10], game theory, formal models and model checking

are combined in order to verify smart contracts. It focuses

on smart contracts involving physical actions, e.g., internet

shopping of physical goods where the buyer pays a deposit,

but using blockchain technology and crypto-currency for all

the payments. Game theory is used to analyze the behavior of

the buyer and the seller, and to see how the choices of one

affects the choices of the other. The smart contract itself is

modeled formally, and the probabilistic model checker PRISM

was used to formally verify certain properties. The actions of

the buyer and the seller are uncertain and probabilistic, which

is why a probabilistic model checker was used.

The probability to make a certain choice is assumed depen-

dent on the economical benefit. Six different behaviors were

Authorized licensed use limited to: AMRITA VISHWA VIDYAPEETHAM AMRITA SCHOOL OF ENGINEERING. Downloaded on March 08,2022 at 17:20:42 UTC from IEEE Xplore. Restrictions apply.

used in the model checking, from honest to gradually more

dishonest. Additionally, six different ratios between the deposit

and price were used. The model checker was also used to verify

specifications given different behaviors. A case where an honest

buyer and a quite dishonest seller used the smart contract was

evaluated. As expected, the probability for the seller to have a

30% loss was negligible. For the buyer, however, the maximum

probability of a 30% loss, at a deposit/price ratio of 6

10
, was

50%.

The conclusion of the researchers was that by adding game

theory to the formal verification, the effect of user behavior

in smart contracts could be modeled and used in formal

verification with a probabilistic model checker.

F. Bug Detection using Formal Methods [11]

Paper [11] regards finding vulnerabilities in smart contracts,

using a home made symbolic execution tool called OYENTE.

The vulnerabilities discovered were reentrancy, transaction-

ordering dependence (TOD), timestamp dependence and mis-

handled exceptions. Even though OYENTE was simply used

to prove the existence of four common security bugs, not to

formally verify the absence of bugs, some elements of formal

verification were used in the process. Additionally, with a

functional tool for symbolic execution, the first step towards

formal verification has already been made. Thus, even though

formal verification was not the main goal of the research, it

still deserves to be mentioned in this setting.

Using OYENTE, the program variables of the contract are

replaced by symbolic variables, and the different paths of

the program can be followed and examined. The required

inputs to OYENTE are the contract bytecode and the Ethereum

current state. Then, by performing symbolic execution, three

common contract security problems are discovered, if present.

OYENTE also generates the CFG of the contract bytecode,

which could further be used for formal verification as described

in Section III-B.

All smart contracts in the first 1,459,999 blocks of Ethereum

were checked for vulnerabilities using OYENTE. This equals

to 19,366 smart contracts, out of which 8,833 were found to

have security vulnerabilities.

IV. DISCUSSION

Table I gives a summary of the research done on formal

verification of smart contracts. However, it should be noted

that the table does not include the work that has been done

to formally verify one specific contract, e.g. [12], [13], but

rather the verification frameworks that could be applicable to a

large number of smart contracts. Several open-source security

and bug analysis tools, like [14], have also been disregarded in

the survey, as they do not implement any elements of formal

methods.

Smart contracts can be an important tool for the future,

and can be valuable to many different industries. Because of

distributed ledger technology, they can offer immutable and

irreversible contracts without the use of a trusted third party.

However, before smart contracts can achieve widespread use,

they have to gain the trust of the general public. With cases like

the DAO attack, the faith in blockchain technology has been

shaken. Proving the functionality of the smart contracts using

formal methods could be a way to solve this problem of trust.

It is however important to acknowledge that a formally

verified contract not necessarily is completely bug free. It is

not certain that the specified properties cover all undesirable

outcomes. If some important properties are forgotten during

the verification, also a formally verified contract can contain

mistakes.

Even though formal verification can help increase the trust

for smart contracts, it requires a robust framework for the

verification itself. Human programmers make mistakes when

programming smart contracts. Since humans also play an

important role during the verification process, by making

models and formulating specifications, also formal verification

is prone to errors. Correct models for smart contracts are

difficult to obtain, since also the blockchain network and

human behavior affects the execution. It is not always that

the written code corresponds to the underlying intention or

the model corresponds to the actual system. These man-made

errors can get undesired consequences. For this reason, it is

important to create a robust framework that minimizes the

risk of mistakes. It would be useful to develop a library of

reusable building blocks and patterns for programming smart

contracts that have already been formally verified. This has

been done on the blockchain platform Ardor/IGNIS [15], where

use of smart contracts is limited to the library provided by

the developers. This limits the possibilities for the user, but

also limits the possibility for mistakes. Additionally, finding a

suitable programming language for both smart contract coding,

and later its verification, is of great importance. A language

with a strong, unambiguous semantic could make writing error

free code easier.

Some work has already been done in order to formally verify

smart contracts, as seen in Section III. However, even though

formal verification in itself is already a well studied topic, the

field of smart contracts is still relatively new, and the research

on this application of formal verification is limited. Another

consequence of the relatively young age of the research, is

that there is no established standard or best practice yet. Thus,

several different methods have been explored for achieving

formal verification. The two methods that are mainly used in

some variant are model checking and theorem proving. The

results of the state of the art researches are mixed. Some seem

promising for the future, if further developed. However, as of

today, formal verification is only usable for simple contracts

and simplified models.

V. CONCLUDING REMARKS AND FUTURE WORK

This article has given an overview of the current state of

the art for formal verification of smart contracts running on

distributed ledgers such as blockchain. At the time of writing,

there are merely a few academic papers on the topic, which was

Authorized licensed use limited to: AMRITA VISHWA VIDYAPEETHAM AMRITA SCHOOL OF ENGINEERING. Downloaded on March 08,2022 at 17:20:42 UTC from IEEE Xplore. Restrictions apply.

Paper Verification

Method

For all smart

contracts?

Model

human

behavior?

Successful

use-case?

Specification tested for Conclusions

[6] Translation
and type-
checking

No, syntax lim-
itation

No Yes, but
not in all
instances

Low-level properties, with focus on
reentrancy and unchecked calls to
send.

Promising if it is expanded to work for
more of the syntax. At the moment,
only 46 out of 396 smart contracts were
successfully verified.

[7] Theorem
proving

No, syntax lim-
itation

No Yes Low-level properties, like correct
returns from different function calls
regardless of starting condition

Promising framework for use with a
theorem prover, but does not support all
Solidity syntax.

[8] Model
checking

No, syntax lim-
itation

No Yes Low-level properties, like correct
actions triggered by certain circum-
stances

Promising approach that also models the
blockchain environment itself. However,
the modelling language can not translate
all Solidity syntax.

[9] Model
checking

No, mostly rel-
evant to con-
tracts with hu-
man interaction
or influence

Yes Yes High-level properties, like the abil-
ity to sabotage the smart contract for
a hacker

Presents a new way to model smart
contracts. This method is applied suc-
cessfully to a specific contract, but it is
uncertain if it is also applicable to other
kinds of contracts.

[10] Model
checking

No, mostly rel-
evant to con-
tracts with hu-
man interaction
or influence

Yes Yes High-level properties, like probabil-
ity that a seller or buyer lose their
wealth

The addition of game theory enables
the modeling of user behaviour in smart
contracts, and adds a dimension to the
formal verification. However, this ap-
proach is only focused on contracts that
require human interaction.

[11] Symbolic
execution

Yes No Yes Low-level properties, like reen-
trancy, transaction-ordering depen-
dence, timestamp dependence and
mishandled exceptions

This approach proved the existence of
security bugs, but did not formally ver-
ify their absence. Out of 19,366 smart
contracts, 8,833 had the vulnerabilities
that were tested for.

TABLE I
SUMMARY OF THE RESEARCH ON FORMAL VERIFICATION OF SMART CONTRACTS.

expected due to the young age of the technology. However,

the development in the field of formal verification of smart

contracts is happening fast, and is an active research area.

Currently, the approaches can only handle simple smart con-

tracts and simplified models, and are not suitable for complex

contracts.

In general, more work is needed on formal verification of

smart contracts in the future. The approaches presented in

Section III need to be further developed in order to be more

widely adopted and usable for complex contracts. One possible

example of future work could be to improve Solidity* and

EVM* from [6] to support more of the Solidity syntax. In the

approaches using model checking, more accurate models of for

instance the blockchain behavior would improve the results.

At the moment, formal verification is a complicated process

that is not accessible to end-users as an out of the box

functionality. Ideally, every published smart contract should be

formally verified before adoption, and it would be an advantage

if there existed a framework that automated as much of the

process as possible. Another possibility could be to create a

library of already verified reusable blocks and patterns for

smart contracts, similarly to the setup and functionality found

in Ardor/IGNIS. It limits the possibilities, but could in some

cases be sufficient.

ACKNOWLEDGMENT

The research presented in this paper has received funding

from the Norwegian Research Council, SFI Offshore Mecha-

tronics, project number 237896.

REFERENCES

[1] C. Dannen, Introducing Ethereum and Solidity. Apress, 2017.
[2] D. Drescher, Blockchain Basics. Apress, 2017.
[3] O. Hasan and S. Tahar, “Formal Verification Methods,” Encyclopedia of

Information Science and Technology, Third Edition, 2015.
[4] I. Chiswell and W. Hodges, Mathematical Logic. Oxford University Press,

2007.
[5] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT Press,

2008.
[6] K. Bhargavan et al., “Formal Verification of Smart Contracts: Short

Paper,” in Proceedings of the 2016 ACM Workshop on Programming

Languages and Analysis for Security, 2016.
[7] S. Amani et al., “Towards Verifying Ethereum Smart Contract Bytecode

in Isabelle/HOL,” in Proceedings of the 7th ACM SIGPLAN International

Conference on Certified Programs and Proofs, 2018.
[8] Z. Nehai, P. Y. Piriou, and F. Daumas, “Model-Checking of Smart

Contracts,” in Proceedings of the IEEE International Conference on

Blockchain, 2018.
[9] T. Abdellatif and K.-L. Brousmiche, “Formal Verification of Smart Con-

tracts Based on Users and Blockchain Behaviors Models,” IFIP NTMS

International Workshop on Blockchains and Smart Contracts (BSC), Feb

2018, Paris, France, 2018.
[10] G. Bigi et al., Validation of Decentralised Smart Contracts Through

Game Theory and Formal Methods, pp. 142–161. Springer International
Publishing, 2015.

[11] L. Luu et al., “Making Smart Contracts Smarter,” in Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications

Security, 2016.
[12] Y. Hirai, “Formal Verification of Deed Contract in Ethereum Name

Service.” https://yoichihirai.com/deed.pdf, 2016. A ccessed 2019-03-07.
[13] X. Bai et al., “Formal Modeling and Verification of Smart Contracts,” in

Proceedings of the 2018 7th International Conference on Software and

Computer Applications, ICSCA 2018, pp. 322–326, ACM, 2018.
[14] “Mythril.” Website, https://github.com/ConsenSys/mythril-classic.
[15] Jelurida Team, “Jelurida Ardor/IGNIS Whitepaper,” 2017.

Authorized licensed use limited to: AMRITA VISHWA VIDYAPEETHAM AMRITA SCHOOL OF ENGINEERING. Downloaded on March 08,2022 at 17:20:42 UTC from IEEE Xplore. Restrictions apply.

