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Abstract. Smart contracts are programs that run atop of a blockchain
infrastructure. They have emerged as an important new programming
model in cryptocurrencies like Ethereum, where they regulate flow of
money and other digital assets according to user-defined rules. However,
the most popular smart contract languages favor expressiveness rather
than safety, and bugs in smart contracts have already lead to significant
financial losses from accidents. Smart contracts are also appealing tar-
gets for hackers since they can be monetized. For these reasons, smart
contracts are an appealing opportunity for systematic auditing and val-
idation, and formal methods in particular. In this paper, we survey the
existing smart-contract ecosystem and the existing tools for analyzing
smart contracts. We then pose research challenges for formal-methods
and program analysis applied to smart contracts.

1 Introduction

Smart contracts are programs that run atop of a financial infrastructure, and
command the flow of money according to user-defined rules. Today, smart con-
tracts have already been brought to reality on top of publicly deployed cryp-
tocurrencies, most notably Ethereum, which is currently the #2 cryptocurrency,
second to Bitcoin [63], and already hosts tens of millions of smart contract pro-
grams deployed by users.

On Ethereum today, there have been auction mechanisms to raise capital
investment, totalling $1B in the month of 2017 alone. Ethereum contracts have
also been used to implement decentralized order books and public auctions.
A smart-contract based token exchange, IDEX, is the most widely active used
smart contract today, processing $7.5M USD of exchange volume each day1.

Smart contracts are appealing for many reasons, and seem to show great
potential. They essentially provide users with “programmable money” that can
be used to automatically enforce agreements between potentially distrusting par-
ties. They can operate on data provided by authenticated sources (such as stock
prices, account balances, press releases, etc.). They may even be used to imple-
ment decentralized, virtual corporations defined only by the smart contracts
1 https://cryptocoincharts.info/markets/show/etherdelta.
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programatically governing their behavior. There has been significant demand
from within the financial industry, including investments in blockchain technol-
ogy projects [43]. Though integration with smart contracts with existing financial
infrastructure may take years [58].

In cryptocurrencies like Ethereum, smart contracts give end users the full
power and expressivity of a Turing-complete language. With such great power
can come equally devastating bugs with direct financial consequences. Further-
more, since smart contracts are tied directly to anonymous payment instruments,
they are an attractive target for hackers. Recent high-profile disasters involving
the TheDAO [59] and the Parity Wallet [36] have highlighted these risks. Attack-
ers have exploited programming bugs to steal approximately $60M USD.

Smart contracts seem to be a compelling motivation for systematic
approaches to system validation, and to formal methods and program analysis
in particular. Writing a correct smart contract is no easier than writing bug-
free code in any other programming language. In fact, smart contract bugs are
often harder to fix. For one reason, most blockchain systems are designed for
immutability, meaning they do not provide any built-in means to change smart
contract code once it is running. It is perhaps no surprise that the recent disas-
ters have led to public interest from the cryptocurrency community in improve
verification tools.

In this paper, we provide a background on smart contracts, and in particular
the experience over the past few years as Ethereum has brought smart contracts
to a wider audience. We argue that not only do smart contracts provide an
impetus to improve tooling around formal methods, they also highlight new
areas and opportunities for fundamental research in formal methods.

2 Background

Blockchains and Cryptocurrencies. In a nutshell, blockchains are distributed
ledgers maintaining a globally consistent log of user-submitted transactions.
Blockchains come in many forms, permissioned and permissionless. These are
often implemented as open peer-to-peer networks, based on proof-of-work min-
ing. Starting with Bitcoin [63], public blockchains are often used to create a
virtual currency. The main idea of a virtual currency is that user accounts are
associated with public keys. Where users transfer currency between one another
using public key digital signatures.

Smart Contracts in Ethereum. Besides just storing account values, many
blockchains, most notably Ethereum, also feature a full-fledged “smart contract”
programming languages. In Ethereum, contracts are implemented as a new type
of account: ordinary user accounts are associated with public keys, while con-
tract accounts are associated with a fragment of executable code. Users can
create a new contract account by publishing a special transaction containing the
bytecode for the new contract along with an initial endowment of Ether.

Just like user accounts, smart contract accounts can store and wield a balance
of Ether currency. Unlike user accounts, whoever owns the private key determines
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how the money is spent, the Ether belonging to a smart contract account can
only be spent by executing the instructions of the smart contract code. Hence
smart contracts can be thought of as programmable money.

The Ethereum blockchain currently stores more than one million con-
tracts. Developers write in a high level language, the most popular of which
is Solidity. As a programming model, Solidity smart contracts mostly resem-
ble object-oriented programming. Contracts are defined as a class, includ-
ing methods and member variables. Users can create an instance object of
the class through a contract creation transaction. Once created, contracts are
assigned a unique identifier, called its address, which is a 32-byte string such
as 0x06012c8cf97BEaD5deAe237070F9587f8E7A266d. Roughly, the address is a
hash of the contract’s code, and the state of the blockchain prior to its creation.
An example of a smart contract written in Solidity is shown in Fig. 1.

3 Smart Contract Disasters in Ethereum

Most Ethereum contracts are used for some financial purpose, such as collecting
investment funding [29]. Perhaps their most notable use is for Initial Coin Offer-
ings (ICOs), which have been a successful mechanism for generating investment
revenue (more than $1B USD invested in 2017), though these have also drawn
the attention of regulators since many have been fraudulent.

ICOs so far have typically made use of a “token” contract, which has emerged
as a standard convention. The simple Solidity program in Fig. 1 captures the
basic functionality. Tokens have a finite supply, but can be owned by a user,
and can be transferred to another user at the owner’s discretion. Many ICOs
build additional smart contract functionality in addition to the token interface,
such as an auction mechanism or a crowd-voting mechanism. Implementation
flaws of such smart contracts have already caused several significant disasters in
practice. We now tell the stories behind a few of them, and later discuss how
they motivated new research questions for formal methods.

3.1 The DAO

The DAO was originally developed as a fundraising platform by a company called
slock.it. The idea behind slock.it is the vision of “smart property” as defined by
Nick Szabo in his influential 1997 essay on smart contracts [74]. The initial
product was a “smart lock,” a physical lock that could be applied to bicycles
or rental apartments. The lock could be remotely operated by a nearby base
station, which also connected to the internet and the Ethereum peer-to-peer
network. The opening of the lock could be triggered by a message sent to an
Ethereum smart contract. The price for renting a particular bicycle could thus
be set by dynamic market.

As ambitious engineers with prior Ethereum experience, slock.it also set out
to solve the meta-problem of fundraising. Rather than seeking traditional ven-
ture capital funding, and rather than using an existing centralized crowdfunding

https://slock.it/
https://slock.it/
https://slock.it/
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Fig. 1. Solidity smart contract example.—This excerpt is from an ERC20-compliant
“token” contract, which defines a virtual currency that can be transferred between
users and traded on exchanges like Etherdelta.

platform like Kickstarter, slock.it developed a multi-purpose Ethereum-based
crowdfunding platform, called the Decentralized Anonymous Organization (or
The DAO).

The phrase Decentralized Autonomous Corporation (DAC), was first coined
by Larimer [51] and expounded on by Buterin [33] as a central motivation for
building a flexible programming language on top of Ethereum.

“Think of a crypto-currency as shares in a Decentralized Autonomous
Corporation (DAC) where the source code defines the bylaws” – Daniel
Larimer

Token holders would purchase DAO tokens by investing Ether. Token hold-
ers would be able to vote on the activities funded by the DAO. Would-be
entrepreneurs would submit funding proposals for consideration by The DAO,
who would then vote on whether or not to fund the proposal. If accepted, the
entrepreneur would pay profits to the DAO, which would be disbursed back to
the token holders in proportion to their investment.

The source code for the DAO defined a fairly complex deliberation and
decision making structure. For example, in order to mitigate potential hostile
takeovers by an investor, the DAO provided a way for a dissenting token holder
to exit, or “split” from the DAO, withdrawing their remaining share of the assets.
All of this is to say that the DAO’s design was ambitious, and experts antici-
pated that it would have failed for subtle game-theoretic reasons [53]. Instead,
the experiment was cut short by a more mundane flaw. The technical cause is
interesting, and illustrates some of the challenges in designing smart contracts.

The DAO’s Flaw: Re-entrancy Hazards. The technical flaw behind the DAO’s
failure is essentially due to a unintuitive behavior of method invocation involv-
ing untrusted code. The events surrounding the DAO flaw and its exploit are
explained in detail by a blogpost by Phil Daian [35]. We illustrate the idea here
with a simple example in Fig. 2. When the ReentrantToken.withdraw method

https://slock.it/
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is invoked, it uses msg.sender.call to invoke the fallback function() method
of the caller, transferring the requested Ether. If the caller is AttackContract,
then this recursively invokes withdraw again, repeating until gas runs out or
the call stack limit 1024 is reached. The Ether is transferred with each call, but
the balances field is only updated after the recursive call completes, leading to
multiple withdrawals.

As it turns out, the attacker was only able to withdraw a portion of the
funds from the contract before a team of developers with Ethereum Foundation
raced the attacker to withdraw the rest and return them to the original own-
ers [41]. Furthermore, by a stroke of luck (one that defies explanation, involving
a subtle design issue with the “split” functionality mentioned above [35]), the
attacker’s withdrawn funds entered a month-long purgatory, which enabled the
Ethereum community to develop a “hardfork” remedy that reverted the theft
at last minute [75]. What rules of engagement drive interventions in smart con-
tracts?

Fig. 2. A toy example of a vulnerable reentrant smart contract (similar to the DAO).
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3.2 Parity Wallet Failures

The Parity wallet is an Ethereum smart contract that is provided along with
the Parity node, the second most popular Ethereum node software. Although
the Parity software supports ordinary user accounts, it also gives the user the
option to create a “wallet” account, which creates an instance of the Ethereum
smart contract for the benefit of customizability and extra features:

“The most common use-case are multi-signature wallets, that allow
for transaction logging, withdrawal limits, and rule-sets for signatures
required.”

In Ethereum, each transaction must pay a transaction fee that depends on
the amount of resources consumed, including each byte of data, and each opcode
executed. Creating a contract means paying for each byte of bytecode. To reduce
the costs of creating instances of the same transaction, the Parity wallet makes
use of a form of smart contract inheritance.

The idea is that the main portion of the Parity wallet code is uploaded to
a single instance, at address 0xbec591de75b8699a3ba52f073428822d0bfc0d7e,
which can be linked to by the individual per-user instances of the wallet. The
wallet library defines most of the methods relevant to the wallet, such as
“withdraw”, while the per-user wallets dispatch to the code contained in the
library. This kind of inheritance is achieved in Ethereum through the use of the
delegatecall opcode, which was added fairly recently to the Ethereum Virtual
Machine (EVM). An example illustrating inheritance can be found in Fig. 3.

The delegatecall takes in another contract’s address as a parameter. The
semantics of this opcode instruction runs the code from the target contract,
in the context of the calling contract. This essentially achieves the prototype
inheritance pattern; the library is not a superclass, but rather an actual object
instance. As an object instance, methods can be invoked directly on the contract.
This fact was overlooked, leading to a disaster totaling in tens of millions of
dollars. In particular, while the subclass wallets featured an access control policy
whereby only the contract creator can command the contract, the library object
itself was uninitialized and had an open access policy. As a result, a random user,
who later claimed to be a newcomer to Ethereum, was able to claim ownership
of the library and destroy it. At the current time, all instances of this version of
the Parity wallet, numbering at least 150 and controlling around $150M USD,
are inoperable.

Other Common Bugs in Ethereum Smart Contracts. While the re-
entrancy and delegatecall bugs are well known and quite severe, there are
other classes of bugs that are also relevant to smart contracts (e.g. reliance on
poor quality sources of randomness). Atzei et al. [28] provide a taxonomy of
common classes of bugs in Ethereum smart contracts.
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Fig. 3. Prototype inheritance as found in the Parity wallet

4 Research Trends

4.1 Safer Smart Contract Languages

A wide variety of approaches to language design have now been proposed and
in some cases tried in practice, as surveyed by Seijas et al. [69]. In Table 1 we
provide a summary of such proposals. The simplest path to a better scripting
language, taken by Vyper, is to modify the existing Solidity language through
syntactic restriction. That is, Vyper is a safer subset of Solidity. Many other
smart contract languages use a different programming model, such as functional
programming languages, formal logics and automata.

Typed functional programming languages are promising for smart contracts
because they are known to be amenable to formal analysis. For example, the
Tezos alternative to EVM is called Michelson, and is designed as a typed abstract
machine for (mostly) pure functional programs [12], while Liquidity is an Ocaml-
inspired functional alternative to Solidity for high level contract programming.
At the opposing end of the restrictive-expressive spectrum, the Bitcoin devel-
oper community has preferred smart contracts compatible with the existing
UTXO model underlying Bitcoin Script [1], and that guarantee a property “reorg
safety”. Simplicity is a typed functional language for this regime. Phil Wadler
has written a comparison of both Michelson and Simplicity, ultimately arguing
for Plutus, another alternative typed functional language [76].

Other various programming models have also been proposed, which can
be alternatives to EVM. Rholang is build on a core calculus called ρ-calculus
(inspired by π-calculus) which provides asynchronous message-passing. Similarly,
Scilla is based on communicating automata, while FSolidM is a formally finite-
state machine based model for Ethereum. Owlchain, combines timed-automata-
language (TAL) and web ontology language (OWL). The formal definitions
underlying these models are also expected to simplify formal analysis, though
the benefits of these have yet to be seen.

Many blockchain or cryptocurrency projects often differentiate themselves in
their smart contract programming language, however several other factors seem
to determine how their project evolves. They may differ also by their underlying
consensus algorithms, or by the target applications that guide their choices of
engineering tradeoffs.
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Several proposals have been made for “sharded” blockchains, which achieve
better scalability but pose an additional challenges for smart contracts. Instead
of a single linearized chain replicated by every node in the blockchain network,
the ledger is instead logically divided into separate namespaces, each of which is
replicated by only a portion of the nodes. This model underlies Omniledger [48],
RScoin [37], Aspen [38], and Scilla [71].

4.2 Program Analysis

As far as we know, there are 11 tools or frameworks attempting to detect var-
ious types of vulnerabilities, or give an assistance for programming. The table
below (see Table 2) shows their detailed capabilities respectively. Here, we give
a summary for them.

From the scale of checking abilities, SmartCheck provides the most types
of checking and recommendations, and more serves as a dynamic suggestion-
generated system for Solidity source code. Currently, most of its Solidity-related
checking is already provided by Solidity IDE [18].

From the view of vulnerabilities, these tools almost cover all possible vul-
nerabilities mentioned in [4,24,28], including safer programming design pattern
suggestion. The reentry vulnerability became the most popular one to tackle,
and the reason is obvious because this vulnerability resulted in the infamous
DAO attack [35].

However, apart from traditional bugs like integer overflow or usage of unini-
tialized variables, those vulnerabilities shown in contract programming do not
have unified definition respectively, or their detection results highly depend on
tools’ own implementations.

From the view of programming analysis techniques, most of the tools choose
static analysis and a majority of them support EVM bytecodes analysis. Securify
and Mythril declare supporting on-chain contracts analysis. Porosity does some
reverse engineering and provides a prototype for decompilation. Solgraph and
Mythril can generate control flow graphs, and Manticore and Maian will generate
transactions with inputs for later validation on each vulnerable path. Oyente also
has a validation process after symbolic execution analysis. Oyente, Maian and
ZEUS provide false-positive analysis, and all of them use manually-tagged data
sets, selected from contracts with verified2 Solidity source code.

In order to better describe contracts logic model and specifications, CertiK
has its own verification labeling languages, and ZEUS uses an intermediate-level
abstract language. Oyente develops their own EVM semantics, EtherLite, and
Maian modifies it in their implementation.

Most of those tools are developed in Python, or other languages like Java
(SmartCheck), OCaml (Dr.Y), JavaScript (Solgraph) and C++ (porosity). Man-
ticore provides a Python API for analysis of EVM bytecode.

Besides, there are some other efforts in language (Sect. 4.2) or semantics
design, which could help with formal verification of smart contracts (see Table 3).

2 Here “verified” means the Solidity source code corresponds to the EVM bytecodes.
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Table 1. Languages

Languages Descriptions (motivation, expressivity, type system,

analysis-friendly features, etc.)

Reference

Scilla

(intermediate-level)

(Zilliqa)

- motivated by achieving expressivity and tractability Paper [71], code [70]

- based on communicating automata [50]

- provide limited translation from higher-level

languages (i.e., Solidity)

- provide translation into Coq for verification, along

with contract protocols, semantics, safety/liveness

properties and proof machinery

FSolidM (Ethereum,

framework,

higher-level)

- aims to develop more secure smart contracts Paper [55], code [54]

- a formal, finite-state machine based model

- provide several plugins (i.e., design patterns) to

enhance security and functionality, targeting at

vulnerabilities as reentry bugs and transaction

ordering, or design patterns as time constraint and

authorization

- primarily for Ethereum, but it may applied on other

platforms

- provide translation into Solidity

Rholang

(higher-level,

RChain)

- primitively for RChain, but could be used in other

settings

Code [19]

- focus on message-passing and formally modeled by

the ρ-calculus, a reflective, higher-order extension of

the π-calculus, which is good for concurrent settings

[57]

Vyper (Ethereum,

higher-level)

- mainly target at security and auditability Code [5], doc [27]

- provide the following features: bounds and overflow

checking, support for signed integers and decimal fixed

point numbers, decidability, strong typing, small and

understandable compiler code, and limited support for

pure functions

- does not support the following features: modifiers,

class inheritance, inline assembly, operator

overloading, recursive calling, infinite-length loops and

binary fixed point

- statically typed language

Type-coin (Bitcoin) - a logical commitment mechanism Paper [34]

- the logic is linear and not rich to handle complex

situations

Simplicity (Bitcoin) - type-safety, no unbounded loops, no named variables Paper [66], blog [31]

- no function types and thus no higher-order functions

Michelson

(Tezos)(lower-

level)(functional)

- a strongly-typed, stack-based language Paper [12], web [26]

- It doesn’t include many features like polymorphism,

closures, or named functions

- more as a way to implement pieces of business logic

than as a generic “world computer”

- Programs written in Michelson can be reasonably

analyzed by SMT solvers and formalized in Coq

without the need for more complicated techniques like

separation logic

- To provide a straightforward platform for business

logic, to provide a readable bytecode, and to be

introspectable

(continued)
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Table 1. (continued)

Languages Descriptions (motivation, expressivity, type system,

analysis-friendly features, etc.)

Reference

- Entirely original implementation in OCaml

- Isolated economical rules, self-amendable via voting

- purely PoS

- Blockchain state in a git-like persistent store

- Highly functional, defensive coding style for the

critical parts

- designed with formal certification in mind

Liquidity (Tezos)

(higher-

level)(functional)

- It uses the syntax of OCaml, and strictly complies to

Michelson security restrictions

code [7], web [65]

Plutus (higher-level)

and Plutus Core

(lower-level)

(IOHK)

- compiled to Plutus Core (lower level), Lisp-like

syntax

Code [17], paper [56]

- a pure functional strictly typed programming

language, with user-defined data types and

polymorphism

- several issues: unbounded integers supporting,

non-supporting abstract data types and data

constructors

Owlchain

(BOSCoin)

- a decidable programming framework, which consists

of the Web Ontology Language and the Timed

Automata Language. - OWL is defined as W3C

standard, a declarative language that provides

decidability

Article [32]

- separate declaration from processing

- TAL, Timed Automata Language, is a new language

that is used to create operators. It is a finite state

programming environment with two constraints: time

limit and pure functions. Timed automata modeling

can detect undefined areas (reachability problem) in

the code that developers missed. Pure function can

eliminate side effects that can occur during

development

Most of proposals relate to functional languages, perhaps due to the advantages
to perform static analysis.

For semantics, usually a tool has its own semantics (like Oyente has Ether-
Lite). A representative work is [39], because they provide the first complete
small-step semantics of EVM bytecodes and formalize it in F*. Also, this paper
points out that, though smart contracts are written in a Turing complete lan-
guage, their computations are bounded by gasLimit, thus it becoming a “quasi”
Turing-complete language.

4.3 Off-chain Protocols and Cryptography

Off-chain payment channels have emerged as an important topic in smart con-
tracts, in both industry and academia. Once a payment channel is established
between two parties, they can send rapid micropayments to each other without
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Table 2. Tools and frameworks for analyzing smart contracts

Tool/Framework Capabilities Reference

CertiK (Demo) - target at fully trustworthy blockchain ecosystems

in the future

White paper [2]

- specifications for each function can be expressed

using CertiK labels, indicating pre-condition,

post-condition and invariants respectively, as

comments in Solidity programs

Dr.Y’s Ethereum

Contract Analyzer

- a symbolic execution tool, reflecting contract

behavior to some point

Code [44]

Maian - check locked money Paper [64], code [8]

- detect unchecked suicide or Ether sending

- generate inputs to validate through private

blockchain

Manticore - detect potential overflow and underflow

conditions on “ADD”, “MUL” and “SUB”

instructions

Article [11], code [9],

doc [10]

- detect potential uses of uninitialized memory or

storage

- calculate code coverage

- generate inputs which could trigger unique code

paths (Solidity source code needed)

- Other: offer a Python API for analysis of EVM

bytecodes

Mythril - detect reentry bugs and external calls to

untrusted contracts

Article [60,61], doc

[13], code [62],

- detect unchecked suicide or Ether sending

- check mishandled exceptions (i.e., detect

unchecked CALL return value)

- check integer underflows

- detect usage of “tx.origin” [21]

- check dependence on predictable variables (e.g.,

coinbase, gaslimit, timestamp, number, etc.)

- Other: generate control flow graph, blockchain

exploration and some utilities

- support on-chain contracts analysis

Oyente - detect reentry bugs Paper [52], web access

[16], code [15]- check mishandled exceptions (i.e., detect

unchecked CALL return value)

- check transaction-order-dependency (a.k.a.

money concurrency, or front running)

- check timestamp dependency

- check possible assertion failure (Solidity source

code required)

- calculate code coverage

Porosity - find potential reentrancy vulnerability Code [3], white paper

[73], article [72]- support decompilation and disassembly

SmartCheck (target at

Solidity)

- detect reentry bugs Code [23], web access

[22]- check locked money

- detect possibly infinite or impractical loops

- detect unchecked low-level call

(continued)
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Table 2. (continued)

Tool/Framework Capabilities Reference

- check integer overflow and underflow, and

recommend to use the SafeMath library [14]

- check timestamp dependence

- Other: more better programming design pattern

recommendation

- Other: recommendations for standard ERC-20

function usages, and check style guide violation

- Other: some checking for recommended Solidity

programming style

Securify - check reentry bugs Web access [20]

- check mishandled exception

- check transaction-order-dependency

- check insecure coding patterns, e.g., unchecked

transaction data length, use of ORIGIN instruction

and missing input validation

- check unexpected Ether flows, such as locked

Ether [68]

- check use of untrusted inputs in security

operations, i.e., checking whether the inputs to the

SHA3 depend on block information (timestamp,

number, coinbase)

Solgraph - highlight potential unchecked money receiver Code [67]

- generate function control flow of a Solidity

contract

ZEUS - support self-defined policy verification, e.g.,

reentry bugs, unchecked “send”, possibly

vulnerable failed “send”, integer overflow,

transaction state dependency (i.e., usage of

“tx.origin”), block state dependency (including all

“block” parameters) and transaction order

dependency

Paper [47]

- specification limited to quantifier-free logic with

integer linear arithmetic

any transaction fees. The idea is that the parties send messages to each other
in the typical case, off-chain, and only use the smart contract to close. Payment
channels are also the building blocks for payment channel networks, which are
a highly anticipated scalability proposal for cryptocurrencies.

Payment channels and state channels are multi-faceted protocols, relying not
just on the smart contract, but also on a cryptographic scheme involving digital
signatures and hash functions, as well as the reconciliation of state stored at
different parties. Reasoning about these applications relies on more than just
analyzing the smart contract directly.

Off-chain Payment Channels. A smart contract payment channel protocol
should provide the following (informal) properties:
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Table 3. Language design and model translation

Languages or
semantics

Descriptions (motivation, expressivity, type system,
analysis-friendly features, etc.)

Reference

SMAC (modular
reasoning)

- introduce ECF (Effectively callback free) property
for modular object-level analysis

Paper
[40]

- develop online detection algorithm which can apply
to Ethereum full node, and monitor non-ECF
executions, including the infamous DAO bug

eth-isabelle
(semantics)

- define the complete instruction set of EVM in Lem, a
language that can be compiled into Coq, Isabelle/HOL
and HOL4

Paper
[46], code
[45]

- can prove invariants and safety properties

TU Wien F*
(2018) (Ethereum)

- present the complete small-step semantics of EVM
bytecode in the F* proof assistant

Paper
[39], code
[25]- define a number of central security properties, such

as call integrity, atomicity, and independence from
miner controlled parameters

F* (2016)
(Ethereum)

- motivated by formal verification Paper
[30]- partial semantics for converting Solidity to F*, EVM

to F*

- show the correspondence between Solidity and EVM
to some point

KEVM (semantics,
high-level,
Ethereum)

- a complete K Semantics of the Ethereum Virtual
Machine (EVM)

Code [6],
paper
[42]

– (Timing properties.) Payments are processed very quickly (no blockchain
transactions), and closure is guaranteed within a predictable time (small num-
ber of blockchain transactions).

– (Integrity properties.) If Bob thinks he has received $X, then he is guaran-
teed to get at least $X when the channel closes. And Alice should get back
everything except what she has paid.

A payment channel protocol is given in Algorithm1, comprising a local pro-
gram for the sender (Alice), a local program for the recipient, and a smart
contract program. Alice initially deposits $X by making an on-chain transac-
tion, into a smart contract running the given pseudocode. Alice can then make
numerous micropayments to Bob, by sending signed messages that indicate Bob’s
latest credit. Each payment can be very fast and efficient, since it requires only
point-to-point interactions between Alice and Bob; it does not require any on-
chain transaction. At any time, either party can request to “close” the channel,
in which case Alice submits her most recent signed message. The smart contract
is only activated when the channel closes.

The generalization of a payment channel, a “state channel”, allows two or
more parties to maintain an off-chain replicated state machine that can be syn-
chronized on demand (or in case of a dispute) with the blockchain.
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Algorithm 1. A Smart Contract protocol for Off-chain Payments
Alice and Bob are represented by hardcoded public keys
Local code for Alice (the sender):

1: [Initially]:

2: credit := $X0 // initial deposit

3: [on input (“pay”, $X)]:

4: assert $X ≤ credit
5: credit := credit − $X
6: σ ← Sign($X0 − credit) as Alice
7: send (σ,$X0 − credit) to Bob

8: [on input (“close”)]: send (“close”) to the Contract

Local code for Bob (the recipient):

1: [Initially]:

2: credit := 0
3: [on receiving (σ, credit′) from Alice)]:

4: assert σ is a valid signature on credit′ from Alice
5: assert credit′ ≤ $X0

6: if credit′ > credit

7: credit := credit′

8: σ := σ′

9: [on input (“close”)]: send “close” to the Contract
10: [on contract event (“close”):

11: send (“evidence”, σ, credit) to the Contract

Smart Contract Code:

1: [Initially]:

2: lastKnownCredit := 0
3: [on contract input (“close”) from Alice or Bob (only once)]:

4: within delay O(Δ):

5: send ($X0 − lastKnownCredit) to Alice
6: send (lastKnownCredit) to Bob

7: [on contract input (“evidence”, σ, credit)] from Alice or Bob:

8: assert σ is a valid signature on credit from Alice
9: assert credit′ ≤ $X0

10: if credit > lastKnownCredit

11: lastKnownCredit := credit

Functionality Model for the Payment Channel. The payment channel protocol
above was given an informal specification. To give a precise security definition,
an appealing approach is to use the simulation based security framework used by
cryptographers. The main idea behind the simulation-based security framework
is that instead of expressing properties as indistinguishability games, we provide
an explicit program, called an ideal functionality, that exhibits all the properties
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Algorithm 2. An Ideal Functionality for Off-chain Payments
1: [Initially]

2: Alice and Bob are represented by hardcoded public keys
3: credit@A := $X0 // initial deposit
4: credit@B := $0

5: [on input (“pay”, $X) from Alice]:

6: assert $X ≤ credit@A
7: credit@A := credit@A − $X
8: within O(1) delay:

9: credit@B := credit@B + $X

10: [on input (“close”) from Alice or Bob]:

11: within O(Δ) delay:

12: send at least credit@A to Alice
13: send at least credit@B to Bob and halt

at once. This has the advantage that all the salient security properties of a
protocol can be defined in effectively one place.

An ideal functionality for the payment channel protocol is given in Algo-
rithm2. Note that the functionality is structurally simpler than the protocol (it
executes in one location rather than three), and does not contain any cryptog-
raphy.

It is also easy to see that the functionality exhibits the desired properties. The
phrases “O(1) delay” and “O(Δ) delay” denote the desired time bounds, which
would be automatically inferred or written as annotations by the programmer.
Here Δ refers to a worst-case bound on the time it takes to submit and confirm
a blockchain transaction. Hence the fact that the “pay” command completes in
O(1) time reflects the fact that the protocol uses only off-chain messages. The
credit@A and credit@B expressions denote the respective local views of Alice
and Bob; the functionality explicitly sends a final payment to each consistent
with their local views. Note that it is possible for a payment to interleave with
channel closure; in this case, Bob may receive more than he expected.

Several Instances of Cryptographic Protocols Where the Smart Contract Acts as
a Verifier. OpenVote uses Ethereum as the tallier for a cryptographic, sealed
ballot election. Users submit encrypted ballots to the Ethereum blockchain to
be tallied, along with a zero-knowledge proof (ZKP) that their vote is correctly
formatted (i.e., contains an encryption of just one vote for just one candidate).
The use of the Ethereum blockchain in place of an election authority avoids the
need to trust any privileged party to carry out the election.

Ethereum has recently included support for the ALT BN128 elliptic curve,
which is used in particular for a generic proof system called zkSNARKs. An
example contract is provided where in order to claim a prize, a prover must
demonstrate knowledge of a solution to a Sudoku puzzle, but without revealing
the solution itself. Further cryptographic applications include privacy-preserving
auctions and insurance contracts [49].
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In general, it seems likely that many future applications will involve the
use of increasingly sophisticated cryptographic primitives within smart contract
programs.

5 Challenges and Opportunities for Formal Methods

Smart contracts present three non-traditional challenges to developers, making
smart contracts more difficult to implement than code in other contexts.

1. Composition with untrusted and adversarial code. Smart contracts
are implemented on a distributed system, and are freely accessible by the
public. Composition within smart contracts tends to involve untrusted code.
The DAO involved transferring control flow to an attacker’s smart contract,
which carried out the attack. For this reason we would likely want the capa-
bility to combine runtime certification with static analysis. We would use
static analysis, but may need to write defensive code that provides runtime
enforcement of guarantees against untrusted code. Compositional verification
technologies are useful here, but the challenge is to write a model E of the
environment for the smart contract. Note that E will have to account for
other code fragments that the smart contract might interact with and also a
model of the underlying infrastructure (e.g. blockchain) that the contract is
executing on.

2. Distributed and asynchronous setting. Smart contracts are often just
one component of a more complicated distributed protocol. Smart contracts
often play the role of a “verifier” in a cryptographic protocols. The Ethereum
platform enables application developers to make use of built-in primitives,
such as hash functions, digital signatures, and now more recently, pairing-
friendly elliptic curves, the ingredients for zkSNARK proofs.
In general, a smart contract protocol may involve local code and custom cryp-
tography, which are just as important to the correct functionality and design
of the application of the smart contract itself. However, one challenge here is
that the guarantees that the smart contract requires from the cryptographic
function will heavily depend on the functionality of the smart contract. Future
smart contract programming languages and analysis techniques will need to
take this into account.

3. Economic incentives. Unlike in traditional software, in the smart-contract
setting, many of the desired properties one wishes to establish are economic.
For example, participants might want to verify that their expected payoff for
participating in a contract is non-negative, since otherwise they have little
reason to participate. Analyzing a smart contract often involves reasoning
about game-theoretic properties like incentive compatibility. Effective tools
may need to take this reasoning into account. Formalisms, such as mean-
payoff games, might be useful in this context, but verifying properties of
these expressive formalisms remains a challenge.
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6 Conclusion

This paper surveys the ecosystem of smart contracts, such as various platforms,
high-profile bugs, and existing analysis tools. Of course, one can use existing
analysis techniques and tools to analyze smart contracts, and one should do so.
However, we believe that uniqueness of the smart contracts also brings some
unique challenges for the formal-methods community, which will require new
techniques and novel research ideas.
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