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Abstract. In this paper, we use a formal language that performs deduc-
tive verification on industrial smart contracts, which are self-executing
digital programs. Because smart contracts manipulate cryptocurrency
and transaction information, if a bug occurs in such programs, serious
consequences can happen, such as a loss of money. The aim of this pa-
per is to show that a language dedicated to deductive verification, called
Why3, can be a suitable language to write correct and proven contracts.
We first encode existing contracts into the Why3 program; next, we for-
mulate specifications to be proved as the absence of RunTime Error and
functional properties, then we verify the behaviour of the program us-
ing the Why3 system. Finally, we compile the Why3 contracts to the
Ethereum Virtual Machine (EVM). Moreover, our approach estimates
the cost of gas, which is a unit that measures the amount of computa-
tional e↵ort during a transaction.

Keywords: deductive verification, why3, smart contracts, solidity.

1 Introduction

Smart Contracts [21] are sequential and executable programs that run on
Blockchains [17]. They permit trusted transactions and agreements to be car-
ried out among parties without the need for a central authority while keeping
transactions traceable, transparent, and irreversible. These contracts are increas-
ingly confronted with various attacks exploiting their execution vulnerabilities.
Attacks lead to significant malicious scenarios, such as the infamous The DAO

attack [7], resulting in a loss of ⇠$60M. In this paper, we use formal methods
on smart contracts from an existing Blockchain application. Our motivation is
to ensure safe and correct contracts, avoiding the presence of computer bugs, by
using a deductive verification language able to write, verify and compile such
programs. The chosen language is an automated tool called Why3 [13], which
is a complete tool to perform deductive program verification, based on Hoare
logic. A first approach using Why3 on Solidity contracts (the Ethereum smart
contracts language) has already been undertaken [2]. The author uses Why3

to formally verify Solidity contracts based on code annotation. Unfortunately,
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that work remained at the prototype level. We describe our research approach
through a use case that has already been the subject of previous work, namely
the Blockchain Energy Market Place (BEMP) application [19]. In summary, the
contributions of this paper are as follows:

1. Showing the adaptability of Why3 as a formal language for writing, checking
and compiling smart contracts.

2. Comparing existing smart contracts, written in Solidity [11], and the same
existing contracts written in Why3.

3. Detailing a formal and verified Trading contract, an example of a more com-
plicated contract than the majority of existing Solidity contracts.

4. Providing a way to prove the quantity of gas (fraction of an Ethereum token
needed for each transaction) used by a smart contract.

The paper is organized as follows. Section 2 describes the approach from a theo-
retical and formal point of view by explaining the choices made in the study, and
section 3 is the proof-of-concept of compiling Why3 contracts. A state-of-the-art
review of existing work concerning the formal verification of smart contracts is
described in section 4. Finally, section 5 summarizes conclusions.

2 A New Approach to Verifying Smart Contracts

2.1 Background of the study

Deductive approach & Why3 tool. A previous work aimed to verify smart con-
tracts using an abstraction method, model-checking [19]. Despite interesting re-
sults from this modelling method, the approach to property verification was not
satisfactory. Indeed, it is well-known that model-checking confronts us either
with limitation on combinatorial explosion, or limitation with invariant genera-
tion. Thus, proving properties involving a large number of states was impossible
to achieve because of these limitations. This conclusion led us to consider ap-
plying another formal methods technique, deductive verification, which has the
advantage of being less dependent on the size of the state space. In this ap-
proach, the user is asked to write the invariants. We chose the automated Why3

tool [13] as our platform for deductive verification. It provides a rich language
for specification and programming, called WhyML, and relies on well-known ex-
ternal theorem provers such as Alt-ergo [10], Z3 [16], and CVC4 [8]. Why3 comes
with a standard library3 of logical theories and programming data structures.
The logic of Why3 is a first-order logic with polymorphic types and several
extensions: recursive definitions, algebraic data types and inductive predicates.

Case study: Blockchain Energy Market Place. We have applied our approach to
a case study provided by industry [19]. It is an Ethereum Blockchain application
(BEMP) based on Solidity smart contracts language. Briefly, this Blockchain
application makes it possible to manage energy exchanges in a peer-to-peer

3 http://why3.lri.fr/
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way among the inhabitants of a district as shown in Figure 1. The figure il-
lustrates (1) & (1’) energy production (Alice) and energy consumption (Bob).
(2) & (2’) Smart meters provide production/consumption data to Ethereum
blockchain. (3) Bob pays Alice in ether (Ethereum’s cryptocurrency) for his
energy consumption. For more details about the application, please refer to [19].

Fig. 1. BEMP Process

In our initial work, we applied our
method on a simplified version of the
application, that is, a one-to-one ex-
change (1 producer and 1 consumer),
with a fixed price for each kilowatt-
hour. This first test allowed us to
identify and prove RTE properties.
The simplicity of the unidirectional
exchange model did not allow the def-
inition of complex functional proper-
ties to show the importance and util-
ity of the Why3 tool. In a second step,
we extended the application under study to an indefinite number of users, and
then enriched our specifications. The use of Why3 is quite suitable for this order
of magnitude. In this second version, we have a set of consumers and producers
willing to buy or to sell energy. Accordingly, we introduced a simple trading algo-
rithm that matches producers with consumers. In addition to transferring ether,
users transfer crypto-Kilowatthours to reward consumers consuming locally pro-
duced energy. Hence, the system needs to formulate and prove predicates and
properties of functions handling various data other than cryptocurrency. For a
first trading approach, we adopted, to our case study, an order book matching
algorithm [12]. Please refer to [18], the technical report, for the complete BEMP
application.

2.2 Why3 features intended for Smart Contracts

Library modelling. Solidity is an imperative object-oriented programming
language, characterized by static typing4. It provides several elementary types
that can be combined to form complex types such as booleans, signed, un-
signed, and fixed-width integers, settings, and domain-specific types like ad-
dresses. Moreover, the address type has primitive functions able to transfer ether
(send(), transfer()) or manipulate cryptocurrency balances (.balance). So-
lidity contains elements that are not part of the Why3 language. One could
model these as additional types or primitive features. Examples of such types
are uint256 and address. For machine integers, we use the range feature of
Why3: type uint256 = <range 0 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFF... > because it exactly

4 Ethereum foundation: Solidity, the contract-oriented programming language.
https://github.com/ethereum/solidity
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represents the set of values we want to represent. Moreover, why3 checks that
the constants written by the user of these types are inside the bounds and con-
verts in specifications automatically range types to the mathematical integers,
e.g., int type. Indeed it is a lot more natural and clearer to express specification
with mathematical integers, for example with wrap-around semantic account =

old account - transfer doesn’t express that the account loses money (if the account
was empty it could now have the maximum quantity of money).

Based on the same reasoning, we have modelled the type Int160, Uint160
(which characterizes type uint in Solidity). We also model the address type and
its members. We choose to encode the private storage (balance) by a Hashtable
having as a key value an address, and the associated value a uint256 value.
The current value of the balance of addresses would be balance[address]. In
addition, the send function is translated by a val function, which performs
operations on the balance hashtable. Moreover, we model primitive features
such as the modifier function, whose role is to restrict access to a function; it
can be used to model the states and guard against incorrect usage of the contract.
In Why3 this feature would be an exception to be raised if the condition is not
respected, or a precondition to satisfy. We will explain it in more details with an
example later. Finally, we give a model of gas, in order to specify the maximum
amount of gas needed in any case. We introduce a new type: type gas = int.
The quantity of gas is modelled as a mathematical integer because it is never
manipulated directly by the program. This part is detailed later.

It is important to note that the purpose of our work is not to achieve a
complete encoding of Solidity. The interest is rather to rely on the case study in
our possession (which turns out to be written in Solidity), and from its contracts,
we build our own Why3 contracts. Therefore, throughout the article, we have
chosen to encode only Solidity features encountered through our case study.
Consequently, notions like revert or delegatecall are not treated. Conversely,
we introduce additional types such as order and order_trading, which are
specific to the BEMP application. The order type is a record that contains
orderAddress which can be a seller or a buyer, tokens that express the crypto-
Kilowatthours (wiling to buy or to sell), and price_order. The order_trading
type is a record that contains seller ID; seller_index, buyer ID; buyer_index,
the transferred amount amount_t, and the trading price price_t.

Remark: In our methodology, we make the choice to encode some primitives of
Solidity but not all. For example, the send() function in Solidity can fail (return
False) due to an out-of-gas, e.g. an overrun of 2300 units of gas. The reason is
that in certain cases the transfer of ether to a contract involves the execution
of the contract fallback, therefore the function might consume more gas than
expected. A fallback function is a function without a signature (no name, no
parameters), it is executed if a contract is called and no other function matches
the specified function identifier, or if no data is supplied. As we made the choice of
a private blockchain type, all users can be identified and we have control on who
can write or read from the blockchain. Thus, the Why3 send() function does not
need a fallback execution, it only transfers ether from one address to another.
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Fig. 2. Link between on-chain and o↵-chain

The Why3 send() function does not return a boolean, because we require that
the transfer is possible (enough ether in the sending contract and not too much
in the receiving) and we want to avoid Denial-of-service attack [3]. Indeed, if
we allow to propagate errors and accept to send to untrusted contracts, it could
always make our contract fail and revert. So we cannot prove any property of
progress of our contract. In Tezos blockchain [14], call to other contracts is
postponed to after the execution of the current contract. So another contract
should not be able to make the calling contract fail.

Encoding and verifying functions from the BEMP application.

Oracle notions. Developping smart contracts often rely on the concept of Ora-

cles [1]. An oracle can be seen as the link between the blockchain and the “real
world”. Some smart contracts functions have arguments that are external to the
blockchain. However, the blockchain does not have access to information from
an o↵-chain data source which is untrusted. Accordingly, the oracle provides a
service responsible for entering external data into the blockchain, having the
role of a trusted third party. However, questions arise about the reliability of
such oracles and accuracy of information. Oracles can have unpredictable be-
haviour, e.g. a sensor that measures the temperature might be an oracle, but
might be faulty; thus one must account for invalid information from oracles.
Figure 2 illustrates the three communication stages between various systems in
the real world with the blockchain: (1) the collection of o↵-chain raw data; (2)
this data is collected by oracles; and finally, (3) oracles provide information to
the blockchain (via smart contracts). Based on this distinction, we defined two
types of functions involved in contracts, namely Private functions and Public

functions. We noted that some functions are called internally, by other smart
contracts functions, while others are called externally by oracles. Functions that
interact with oracles are defined as public functions. The proof approach of the
two types is di↵erent. For the private functions one defines pre-conditions and
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post-conditions, and then we prove that no error can occur and that the function
behaves as it should. It is thus not necessary to define exceptions to be raised
throughout the program; they are proved to never occur. Conversely, the public

functions are called by oracles, the behaviour of the function must, therefore,
take into account any input values and it is not possible to require conditions
upstream of the call. So in contrast, the exceptions are necessary; we use so-
called defensive proof in order to protect ourselves from the errors that can be
generated by oracles. No constraints are applied on post-conditions. Thus, valid
data (which does not raise exceptions) received by a public function will satisfy
the pre-conditions of the public function that uses it, because pre-conditions are
proved.

Methodology of proving BEMP functions. To illustrate our methodology, we take
an example from BEMP.

1 function transferFromMarket(address _to , uint _value) onlyMarket returns (

bool success) {

2 if (exportBalanceOf[market] >= _value)

3 {/* Transferring _value from market to _to */}

4 else {success = false;

5 Error("Tokens couldn ’t be transferred from market");}}

The function allows transferring _value (expressing cryptokwh) from the market
to _to address. The mapping exportBalanceOf[] stores balances corresponding
to addresses that export tokens. The function can be executed solely by the
market (the modifier function onlyMarket). The program checks if the market
has enough tokens to send to _to. If this condition is verified, then the transfer
is done. If the condition is not verified, the function returns false and triggers
an Error event (a feature that allows writing logs in the blockchain) 5. This
process is internal to the blockchain, there is no external exchange, hence the
function is qualified as private. According to the modelling approach, we define
complete pre-conditions and post-conditions to verify and prove the function.
The corresponding Why3 function is:

1 let transferFromMarket (_to : address) (_value : uint) : bool

2 requires {!onlymarket ^ _value > 0 }

3 requires {marketBalanceOf[market] � _value }

4 requires {importBalanceOf[_to]  max_uint - _value}

5 ensures {(old marketBalanceOf[market]) + (old importBalanceOf[_to]) = marketBalanceOf[

market] + importBalanceOf[_to]}

6 = (* The program *)

The pre-condition in line 2 expresses the modifier onlyMarket function.
Note that marketBalanceOf is the hashtable that records crypto-Kilowatthours
balances associated with market addresses, and importBalanceOf is the hashtable
that records the amount of crypto-Kilowatthours intended for the buyer ad-
dresses. From the specification, we understand the behaviour of the function
without referencing to the program. To be executed, transferFromMarket must
respect RTE and functional properties:

5 https://media.consensys.net/technical-introduction-to-events-and-logs-in-
ethereum-a074d65dd61e
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– RTE properties: (1) Positive values ; a valid amount of crypto-Kilowatthours
to transfer is a positive amount (Line 2). (2) Integer overflow ; no overflow
will occur when _to receives _value (Line 4).

– Functional properties: (1) Acceptable transfer ; the transfer can be done, if
the market has enough crypto-Kilowatthours to send (Line 3). (2) Successful
transfer ; the transaction is completed successfully if the sum of the sender
and the receiver balance before and after the execution does not change (Line
5). (3) modifier function; the function can be executed only by the market
(Line 2).

The set of specifications is necessary and su�cient to prove the expected be-
haviour of the function.

The following function illustrates a Solidity public function.

1 function registerSmartMeter(string _meterId , address _ownerAddress) onlyOwner

{ addressOf[_meterId] = _ownerAddress;

2 MeterRegistered(_ownerAddress , _meterId);}

The function registerSmartMeters() is identified by a name (meterID) and an
owner (ownerAddress). Note that all meter owners are recorded in a hashtable
addressOf associated with a key value meterID of the string type. The main
potential bug in this function is possibly registering a meter twice. When a meter
is registered, the function broadcasts an event MeterRegistered. Following the
modelling rules, there are no pre-conditions, instead, we define exceptions. The
corresponding Why3 function is:

1 Exception OnlyOwner, ExistingSmartMeter

2 let registerSmartMeter (meterID : string) (ownerAddress : address)

3 raises { OnlyOwner! !onlyOwner = False }

4 raises {ExistingSmartMeter ! mem addressOf meterID}

5 ensures { (size addressOf) = (size (old addressOf) + 1 ) }

6 ensures { mem addressOf meterID}

7 = (*The program*)

The exception OnlyOwner represents the modifier function which restricts the
function execution to the owner, the caller function. It is not possible to pre-
condition inputs of the function, so we manage exceptional conditions during the
execution of the program. To be executed, registerSmartMeter must respect
RTE and functional properties:

– RTE properties: Duplicate record ; if a smart meter and its owner is recorded
twice, raise an exception (Line 4)

– Functional properties: (1) modifier function; the function can be executed
only by the owner, thus we raise OnlyOwner when the caller of the function is
not the owner (Line 3). (2) Successful record ; at the end of the function execu-
tion, we ensure (Line 5) that a record has made. (3) Existing record ; the reg-
istered smart meter has been properly recorded in the hashtable addressOf
(Line 6).

The set of specifications is necessary and su�cient to prove the expected be-
haviour of the function.
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Trading contract. The trading algorithm allows matching a potential consumer
with a potential seller, recorded in two arrays buy_order and sell_order taken
as parameters of the algorithm. In order to obtain an expected result at the end of
the algorithm, properties must be respected. We define specifications that make
it possible throughout the trading process. The algorithm is a private function.
The Trading contract has no Solidity equivalent because it is a function added
to the original BEMP project. Below is the set of properties of the function:

1 let trading (buy_order : array order) (sell_order : array order) : list order_trading

2 requires { length buy_order > 0 ^ length sell_order > 0}

3 requires {sorted_order buy_order}

4 requires {sorted_order sell_order}

5 requires {forall j:int. 0  j < length buy_order ! 0 < buy_order[j].tokens }

6 requires {forall j:int. 0  j < length sell_order ! 0 < sell_order[j].tokens }

7 ensures { correct result (old buy_order) (old sell_order) }

8 ensures { forall l. correct l (old buy_order) (old sell_order) ! nb_token l 
nb_token result }

9 ensures { !gas  old !gas + 374 + (length buy_order + length sell_order) * 928 }

10 ensures { !alloc  old !alloc + 35 + (length buy_order + length sell_order) * 384 }

11 = (* The program *)

– RTE properties: positive values; parameters of the functions must not be
empty (empty array) (Line 2), and a trade cannot be done with null or neg-
ative tokens (Lines 5, 6).

– Functional requirements: sorted orders; the orders need to be sorted in a
decreasing way. Sellers and buyers asking for the most expensive price of
energy will be at the top of the array (Lines 3, 4).

– Functional properties: (1) correct trading (Lines 7, 8); for a trading to be
qualified as correct, it must satisfy two properties:
• the conservation of buyer and seller tokens that states no loss of to-
kens during the trading process : forall i:uint. 0  i < length sell_order !
sum_seller (list_trading) i  sell_order[i].tokens. For the buyer it is equiva-
lent by replacing seller by buyer.

• a successful matching; a match between a seller and a buyer is qualified
as correct if the price o↵ered by the seller is less than or equal to that of
the buyer, and that the sellers and buyers are valid indices in the array.

(2) Best tokens exchange; we choose to qualify a trade as being one of the
best if it maximize the total number of tokens exchanged. Line 8 ensures that
no correct trading list can have more tokens exchanged than the one resulting
from the function. The criteria could be refined by adding that we then want
to maximize or minimize the sum of paid (best for seller or for buyer). (3)
Gas consumption; Lines 9 and 10 ensures that no extra-consumption of gas
will happen (see the following paragraph).

Proving the optimality of an algorithm is always challenging (even on paper),
and we needed all the proof features of Why3 such as ghost code and lemma
function. Proving fairness is an important property that users of a smart-contract
will desire. So we believe it is worth the e↵ort.
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Gas consumption proof. Overconsumption of gas can be avoided by the gas

model. Instructions in EVM consume an amount of gas, and they are categorized
by level of di�culty; e.g., for the set Wverylow = {ADD, SUB, ...}, the amount
to pay is Gverylow = 3 units of gas, and for a create operation the amount
to pay is Gcreate = 32000 units of gas [21]. The price of an operation is
proportional to its di�culty. Accordingly, we fix for each Why3 function, the
appropriate amount of gas needed to execute it. Thus, at the end of the function
instructions, a variable gas expresses the total quantity of gas consumed during
the process. We introduce a val ghost function that adds to the variable gas

the amount of gas consumed by each function calling add_gas (see section 3 for
more details on gas allocation).

1 val ghost add_gas (used : gas) (allocation: int): unit

2 requires { 0  used ^ 0  allocation }

3 ensures { !gas = (old !gas) + used }

4 ensures { !alloc = (old !alloc) + allocation }

5 writes { gas, alloc}

The specifications of the function above require positive values (Line 2). More-
over, at the end of the function, we ensure that there is no extra gas consumption
(Lines 3, 4). Line 5 specifies the changing variables. In the trading algorithm,
we can see that a lot of allocations are performed, they are in fact not necessary
and we could change our code to only allocate a fixed quantity of memory.

3 Compilation and Proof of Gas Consumption

The final step of the approach is the deployment of Why3 contracts. EVM is
designed to be the runtime environment for the smart contracts on the Ethereum
blockchain [21]. The EVM is a stack-based machine (word of 256 bits) and uses a
set of instructions (called opcodes)6 to execute specific tasks. The EVM features
two memories, one volatile that does not survive the current transaction and a
second for storage that does survive but is a lot more expensive to modify. The
goal of this section is to describe the approach of compiling Why3 contracts into
EVM code and proving the cost of functions. The compilation7 is done in three
phases: (1) compiling to an EVM that uses symbolic labels for jump destination
and macro instructions. (2) computing the absolute address of the labels, it
must be done inside a fixpoint because the size of the jump addresses has an
impact on the size of the instruction. Finally, (3) translating the assembly code to
pure EVM assembly and printed. Most of Why3 can be translated, the proof-of-
concept compiler allows using algebraic datatypes, not nested pattern-matching,
mutable records, recursive functions, while loops, integer bounded arithmetic
(32, 64,128, 256 bits). Global variables are restricted to mutable records with
fields of integers. It could be extended to hashtables using the hashing technique
of the keys used in Solidity. Without using specific instructions, like for C, Why3

is extracted to garbage collected language, here all the allocations are done in the

6 https://ethervm.io
7 The implementation can be found at http://francois.bobot.eu/fmbc2019/
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volatile memory, so the memory is reclaimed only at the end of the transaction.
We have not formally proved yet the correction of the compilation, we only
tested the compiler using reference interpreter 8 and by asserting some invariants
during the transformation. However, we could list the following arguments for
the correction: (1) the compilation of why3 (ML-language) is straightforward
to stack machine. (2) The precondition on all the arithmetic operations (always
bounded) ensures arithmetic operations could directly use 256bit operations. (3)
Raise accepted only in public function before any mutation so the fact they are
translated into revert does not change their semantics. try with are forbidden.
(4)only immutable datatype can be stored in the permanent store. Currently,
only integers can be stored, it could be extended to other immutable datatye
by copying the data to and from the store. (5) The send function in why3
only modifies the state of balance of the contracts, requires that the transfer
is acceptable and never fail, as discussed previously. So it is compiled similarly
to the Solidity function send function with a gas limit small enough to disallow
modification of the store. Additionally, we discard the result. (6) The public

functions are di↵erenciated from private one using the attribute [@ evm:external

]. The private functions doesn’t appear in the dispatching code at the contract
entry point so they can be called only internally.

The execution of each bytecode instruction has an associated cost. One must pay
some gas when sending a transaction; if there is not enough gas to execute the
transaction, the execution stops and the state is rolled back. So it is important to
be sure that at any later date the execution of a smart contract will not require
an unreasonable quantity of gas. The computation of WCET is facilitated in
EVM by the absence of cache. So we could use techniques of [6] which annotate
in the source code the quantity of gas used, here using a function ”add_gas
used allocations”. The number of allocations is important because the real gas
consumption of EVM integrates the maximum quantity of volatile memory used.
The compilation checks that all the paths of the function have a cost smaller
than the sum of the ”add_gas g a” on it. The paths of a function are defined
on the EVM code by starting at the function-entry and loop-head and going
through the code following jumps that are not going back to loop-head.

1 let rec mk_list42 [@ evm:gas_checking] (i:int32) : list int32

2 requires { 0  i } ensures { i = length result } variant { i }

3 ensures { !gas - old !gas  i * 185 + 113 }

4 ensures { !alloc - old !alloc  i * 96 + 32 } =

5 if i  0 then (add_gas 113 32; Nil)

6 else (let l = mk_list42 (i-1) in add_gas 185 96; Cons (0x42:int32) l)

Currently, the cost of the modification of storage is over-approximated; using
specific contract for the functions that modify it we could specify that it is less
expansive to use a memory cell already used.

8 https://github.com/ethereum/go-ethereum
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4 Related Work

Since the DAO attack, the introduction of formal methods at the level of smart
contracts has increased. Static analysis tools are very common to achieve this
task. There exists several frameworks, and one of them is called Raziel. It is a
framework to prove the validity of smart contracts to third parties before their
execution in a private way [20]. In that paper, the authors also use a deductive
proof approach, but their concept is based on Proof-Carrying Code (PCC) in-
frastructure, which consists of annotating the source code, thus proofs can be
checked before contract execution to verify their validity. Our method does not
consist in annotating the Solidity source code but in writing the contract in a
language designed for program verification in order to tackle harder properties.
With a slightly di↵erent approach we have Oyente. It has been developed to an-
alyze Ethereum smart contracts to detect bugs. In the corresponding paper [15],
the authors were able to run Oyente on 19,366 existing Ethereum contracts, and
as a result, the tool flagged 8,833 of them as vulnerable. Although that work
provides interesting conclusions, it uses symbolic execution, analyzing paths, so
it does not allow to prove functional properties of the entire application. We
can also mention the work undertaken by the F* community [9] where they
use their functional programming language to translate Solidity contracts to
shallow-embedded F* programs. Just like [5] where the authors perform static
analysis by translating Solidity contracts into Java using KeY [4]. We believe it
is easier for the user to be as close as possible to the proof tool, if possible, and
in the case of smart-contract the current paper showed it is possible. The initia-
tive of the current paper is directly related to a previous work [19], which dealt
with formally verifying the smart contracts application by using model-checking.
However, because of the limitation of the model-checker used, ambitious verifi-
cation could not be achieved (e.g., a model for m consumers and n producers).
This present work aims to surpass the limits encountered with model-checking,
by using a deductive approach on an Ethereum application using Why3.

5 Conclusions

In this paper, we applied concepts of deductive verification to a computer pro-
tocol intended to enforce some transaction rules within an Ethereum blockchain
application. The aim is to avoid errors that could have serious consequences.
Reproducing, with Why3, the behaviour of Solidity functions showed that Why3

is suitable for writing and verifying smart contracts programs. The presented
method was applied to a use case that describes an energy market place allowing
local energy trading among inhabitants of a neighbourhood. The resulting mod-
elling allows establishing a trading contract, in order to match consumers with
producers willing to make a transaction. In addition, this last point demonstrates
that with a deductive approach it is possible to model and prove the operation
of the BEMP application at realistic scale (e.g. matching m consumers with n
producers), contrary to model-checking in [19], thus allowing the verifying of
more realistic functional properties.
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Abstract. RANDAO is a commit-reveal scheme for generating pseudo-
random numbers in a decentralized fashion. The scheme is used in emerg-
ing blockchain systems as it is widely believed to provide randomness
that is unpredictable and hard to manipulate by maliciously behaving
nodes. However, RANDAO may still be susceptible to look-ahead at-
tacks, in which an attacker (controlling a subset of nodes in the net-
work) may attempt to pre-compute the outcomes of (possibly many)
reveal strategies, and thus may bias the generated random number to
his advantage. In this work, we formally evaluate resilience of RANDAO
against such attacks. We first develop a probabilistic model in rewrit-
ing logic of RANDAO, and then apply statistical model checking and
quantitative verification algorithms (using Maude and PVeStA) to an-
alyze two di↵erent properties that provide di↵erent measures of bias that
the attacker could potentially achieve using pre-computed strategies. We
show through this analysis that unless the attacker is already controlling
a sizable percentage of nodes while aggressively attempting to maximize
control of the nodes selected to participate in the process, the expected
achievable bias is quite limited.

Keywords: RANDAO · Rewriting logic · Maude · Statistical Model
Checking · Blockchain

1 Introduction

Decentralized pseudo-random value generation is a process in which participants
in a network, who do not necessarily trust each other, collaborate to produce a
random value that is unpredictable to any individual participant. It is a core pro-
cess of many emerging distributed autonomous systems, most prominently proof-
of-stake (PoS) consensus protocols, which include the upcoming Ethereum 2.0
(a.k.a. Serenity) protocol [11, 8]. A commonly accepted implementation scheme
for decentralized random value generation is a commit-reveal scheme, known as
RANDAO (due to Youcai Qian [16]), in which participants first make commit-
ments by sharing hash values of seeds, and then, at a later stage, they reveal
their seeds, which can then be used for generating the random value. In a PoS
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protocol, and in particular in Serenity [11], the scheme is used repeatedly in a
sequence of rounds in such a way that the outcome of a round is used as a seed
for generating the random value of the following round. Moreover, the scheme is
usually coupled with a reward system that incentivizes successful participation
and discourages deviations from the protocol. Several other distributed protocols
have also adopted this scheme primarily for its simplicity and flexibility.

However, this approach may still be susceptible to look-ahead attacks, in
which a malicious participant may choose to refrain from revealing his seed
if skipping results in randomness that is more favorable to him. In general, a
powerful attacker may attempt to pre-compute the outcomes of (possibly many)
reveal strategies, which are sequences of reveal-or-skip decisions, and thus may
anticipate the e↵ects of his contribution to the process and bias the generated
random number to his advantage.

While this potential vulnerability is known and has been pointed to in several
works in the literature (e.g. [7, 6, 4]), the extent to which it may be exploited by
an attacker and how e↵ective the attack could be in an actual system, such as
a PoS system like Serenity, have not yet been thoroughly investigated, besides
the exploitability arguments made in [7] and [6], which were based on abstract
analytical models. While the high-level analysis given there is useful for gaining
a foundational understanding of the vulnerability and the potential of the at-
tack, a lower-level formalization that captures the interactions of the di↵erent
components of the RANDAO process and the environment could provide deeper
insights into how realizable the attack is in an actual system.

In this work, we develop a computational model of the RANDAO scheme
as a probabilisitic rewrite theory [12, 1] in rewriting logic [13] to formally evalu-
ate resilience of RANDAO to pre-computed reveal strategies. The model gives a
formal, yet natural, description of (possibly di↵erent designs of) the RANDAO
process and the environment. Furthermore, the model is both timed, capturing
timing of events in the process, and probabilistic, modeling randomized protocol
behaviors and environment uncertainties. Being executable, the model facilitates
automated formal analysis of quantitative properties, specified as real-valued for-
mulas in QuaTEx (Quantitative Temporal Expressions Logic) [1], through e�-
cient statistical model checking and quantitative analysis algorithms using both
Maude [9] (a high-performance rewriting system) and PVeStA [2] (a statisti-
cal verification tool that interfaces with Maude). Using the model, we analyze
two properties that provide di↵erent measures of bias that the attacker could
potentially achieve using pre-computed strategies: (1) the matching score, which
is the expected number of proposers that the attacker controls, and (2) the last-
word score, which is the length of the longest tail of the proposers list that the
attacker controls.

We show through this analysis that unless the attacker is already controlling
a sizable portion of validators and is aggressively attempting to maximize the
number of last compromised proposers in the proposers list, or what we call
the compromised tail of the list, the expected achievable bias of randomness of
the RANDAO scheme is quite limited. However, an aggressive attacker who can
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a↵ord to make repeated skips for very extended periods of time (e.g. in thousands
of rounds), or an attacker who already controls a fairly large percentage (e.g.
more than 30%) of participants in the network will have higher chances of success.

The rest of the paper is organized as follows. In Section 2, we quickly review
rewriting logic and statistical model checking. In Section 3, we introduce in some
detail the RANDAO scheme. This is followed in Section 4 by a description of
our model of RANDAO in rewriting logic. Section 5 the analysis properties and
results. The paper concludes with a discussion of future work in Section 6.

2 Background

Rewriting Logic [14] is a general logical and semantic framework in which systems
can be formally specified and analyzed. A unit of specification in Rewriting Logic
is a rewrite theory R, which formally describes a concurrent system including
its static structure and dynamic behavior. It is a tuple (⌃, E [A,R) consisting
of: (1) a membership equational logic (MEL) [15] signature ⌃ that declares the
kinds, sorts and operators to be used in the specification; (2) a set E of ⌃-
sentences, which are universally quantified Horn clauses with atoms that are
either equations (t = t0) or memberships (t : s); (3) A a set of equational
axioms, such as commutativity, associativity and/or identity axioms; and (4)
a set R of rewrite rules t �! t0 if C specifying the computational behavior
of the system (where C is a conjunction of equational or rewrite conditions).
Operationally, if there exists a substitution ✓ such that ✓(t) matches a subterm
s in the state of the system, and ✓(C) is satisfied, then s may rewrite to ✓(t0).
While the MEL sub-theory (⌃, E [ A) specifies the user-defined syntax and
equational axioms defining the system’s state structure, a rewrite rule in R
specifies a parametric transition, where each instantiation of the rule’s variables
that satisfies its conditions yields an actual transition (See [5] for a detailed
account of generalized rewrite theories).

Probabilistic rewrite theories extend regular rewrite theories with probabilis-
tic rules [17, 1]. A probabilistic rule (t �! t0 if C with probability ⇡) specifies a
transition that can be taken with a probability that may depend on a probability
distribution function ⇡ parametrized by a t-matching substitution satisfying C.
Probabilistic rewrite theories unify many di↵erent probabilistic models and can
express systems involving both probabilistic and nondeterministic features.

Maude [9] is a high-performance rewriting logic implementation. An equa-
tional theory (⌃, E [ A) is specified in Maude as a functional module, which
may consist of sort and subsort declarations for defining type hierarchies, op-
erator declarations, and unconditional and conditional equations and member-
ships. Operator declarations specify the operator’s syntax (in mixfix notation),
the number and sorts of the arguments and the sort of its resulting expression.
Furthermore, equational attributes such as associativity and commutativity ax-
ioms may be specified in brackets after declaring the input and output sorts. A
rewrite theory is specified as a system module, which may additionally contain
rewrite rules declared with the rl keyword (crl for conditional rules).
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Furthermore, probabilistic rewrite theories, specified as system modules in
Maude [9], can be simulated by sampling from probability distributions. Using
PVeStA [2], randomized simulations generated in this fashion can be used to
statistically model check quantitative properties of the system. These properties
are specified in a rich, quantitative temporal logic, QuaTEx [1], in which real-
valued state and path functions are used instead of boolean state and path pred-
icates to quantitatively specify properties about probabilistic models. QuaTEx
supports parameterized recursive function declarations, a standard conditional
construct, and a next modal operator �, allowing for an expressive language
for real-valued temporal properties (Example QuaTEx expressions appear in
Section 5). Given a QuaTEx path expression and a Maude module specifying
a probabilistic rewrite theory, statistical quantitative analysis is performed by
estimating the expected value of the path expression against computation paths
obtained by Monte Carlo simulations. More details can be found in [1].

3 The RANDAO Scheme

The RANDAO scheme [16] is a commit-reveal scheme consisting of two stages:
(1) the commit stage, in which a participant pi first commits to a seed si (by
announcing the hash of the seed hsi), and then (2) the reveal stage, in which the
participant pi reveals the seed si. The sequence of revealed seeds s0, s1, · · · , sn�1

(assuming n participants) are then used to compute a new seed s (e.g. by taking
the XOR of all si), which is then used to generate a random number.

In the context of the Serenity protocol [11], the RANDAO scheme proceeds
in rounds corresponding to epochs in the protocol. At the start of an epoch i,
the random number ri�1 generated in the previous round (in epoch i � 1) is
used for sampling from a large set of validators participating in the protocol an
ordered list of block proposers p0, p1, · · · pk�1, where k is the cycle length of the
protocol (a fixed number of time slots constituting one epoch in the protocol).
Each proposer pi is assigned the time slot i of the current round (epoch). During
time slot i, the proposer pi is expected to submit the pair (cpi , spi), with cpi

a commitment on a seed to be used for the next participation in the game (in
some future round when pi is selected again as a proposer), and spi the seed
to which pi had previously committed in the last participation in the game (or
when pi first joined the protocol’s validator set). The RANDAO contract keeps
track of successful reveals in the game, which are those reveals that arrive in
time and that pass the commitment verification step. Towards the end of an
epoch i, the RANDAO contract combines the revealed seeds in this round by
computing their XOR si, which is used as the seed for the next random number
ri+1 to be used in the next round i + 1. To discourage deviations from the
protocol and encourage proper participation, the RANDAO contract penalizes
proposers who did not successfully reveal (by discounting their Ether deposits)
and rewards those proposers who have been able to successfully reveal their seeds
(by distributing dividends in Ether).
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4 A Rewriting Model of RANDAO

We use Rewriting Logic [14], and its probabilistic extensions [12, 1], to build a
generic and executable model of the RANDAO scheme. The model is specified as
a probabilistic rewrite theory R = (⌃R, ER [AR, RR), implemented in Maude
as a system module. By utilizing di↵erent facilities provided by its underlying
formalism, the model R is both probabilistic, specifying randomized behaviors
and environment uncertainties, and real-time, capturing time clocks and mes-
sage transmission delays. Furthermore, the model is parametric to a number of
parameters, such as the attack probability, the size of the validator set and the
network latency, to enable capturing di↵erent scenarios and attack behaviors.

In this section, we describe generally the most fundamental parts of the
model. A more detailed description of the model can be found in [3].

4.1 Protocol State Structure

The structure of the model, specified by the MEL sub-theory (⌃R, ER [ AR)
of R, is based on a representation of actors in rewriting logic, which builds on
its underlying object-based modeling facilities. In this model, the state of the
protocol is a configuration consisting of a multiset of actor objects and messages
in transit. Objects communicate asynchronously by message passing. An object
is a term of the form <name: O | A >, with O the actor object’s unique name
(of the sort ActorName) and A its set of attributes, constructed by an associative
and commutative comma operator , (with mt as its identity element). Each
attribute is a name-value pair of the form attr : value. A message destined
for object O with payload C is represented by a term of the form O <- C, where
the payload C is a term of the sort Content.

Objects The three most important objects in the model are: (1) the blockchain
object, (2) the RANDAO contract object, and (3) the attacker object.

The blockchain object. This object, identified by the actor name operator bc,
models abstractly the public data maintained in a blockchain:

1 <name: bc | vapproved: VHL , vapproved -size: N,

2 vpending: VHL ’, vpending -size: N’,

3 seed: S >

The object maintains a list of validator records of all approved and participating
validators in the system in an attribute vapproved, with its current length in
the vapproved-size attribute. As new validators arrive and request to join the
system, the blockchain object accumulates these incoming requests as a growing
list of validator records in its attribute vpending, along with its current size in
the attribute vpending-size. Finally, this object maintains the seed value that
was last computed by the previous round of the game in its seed attribute.
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The RANDAO object. This object, identified by the operator r, models a RAN-
DAO contract managing the RANDAO process:

1 <name: r | status: U, balance: N, precords: PL,

2 prop -size: M, prop -ilist: IL, pnext: I >

It maintains a status attribute, indicating its current state of processing, and
a balance attribute, keeping track of the total contract balance. Moreover, the
object manages the proposers list for the current round of the game using the
attributes prop-ilist, a list of indices identifying the proposers, and precords,
a list of proposer records of the form [v(I), B] with B a Boolean flag indicating
whether the proposer v(I) has successfully revealed. Additionally, the size of the
proposers list is stored in prop-size. Finally, the object also keeps track of the
next time slot (in the current round) to be processed in the attribute pnext.

The attacker object. The attacker is modeled by the attacker object, identified
by the operator a:

1 <name: a | vcomp: CVL , vcomp -ilist: IL, vcomp -size: N,

2 strategy: G >

The full list of the compromised validator indices is maintained by the attacker
object in the attribute vcomp-ilist. This list is always a sublist of the active
validators maintained by the blockchain object above. Its length is maintained
in the attribute vcomp-size. Since in every round of the game, a portion of
validators selected as proposers may be compromised, the attacker object creates
compromised validator records for all such validators to assign them roles for
the round and maintains these records in its attribute vcomp. If any one of these
compromised validators is at the head of the longest compromised tail of the
proposers list, the computed reveal strategy (whenever it becomes ready during
the current round) is recorded in the attribute strategy.

The Scheduler In addition to objects and messages, the state (configuration)
includes a scheduler, which is responsible for managing time and the scheduling of
message delivery. The scheduler is a term of the form {T | L}, with T the current
global clock value of the configuration and L a time-ordered list of scheduled
messages, where each such message is of the form [T,M], representing a message
M scheduled for processing at time T. As time advances, scheduled messages
in L are delivered (in time-order) to their target objects, and newly produced
messages by objects are appropriately scheduled into L.

4.2 Protocol Transitions

The protocol’s state transitions are modeled using the (possibly conditional
and/or probabilistic) rewrite rules RR of the rewrite theory R = (⌃R, ER [
AR, RR). The rules specify: (1) the actions of the RANDAO contract, which are
advancing the time slot, advancing the round and processing validator reveals,



Title Suppressed Due to Excessive Length 7

and (2) the behaviors of both honest and compromised validators. For space con-
sideration, we only list and describe the rule for advancing the time slot below,
while omitting some of the details. Complete descriptions of all the rules can be
found in the extended report [3].

The transition for advancing the time slot specifies the mechanism with which
the RANDAO contract object checks if a successful reveal was made by the
proposer assigned for the current time slot:

1 rl [RAdvanceSlot] :

2 <name: bc | vapproved -size: N, vpending -size: N’,

3 seed: S, AS >

4 <name: r | status: ready , precords: ([ VID , B ] ; CL),

5 prop -ilist: IL, pnext: K, AS’ >

6 { TG | SL } (RID <- nextSlot(L)) ...

7 =>

8 <name: bc | vapproved -size: N, vpending -size: N’,

9 seed: S, AS >

10 if L > #CYCLE -LENGTH then

11 <name: r | status: processing ,

12 precords: ([ VID , B ] ; CL),

13 prop -ilist:

14 sampleIndexList(N + N’, #CYCLE -LENGTH , S, nilIL),

15 pnext: 1, AS ’ >

16 { TG | SL } (RID <- nextRound)

17 else

18 if L == K then

19 <name: r | status: ready ,

20 precords: ([ VID , B ] ; CL),

21 prop -ilist: IL, pnext: K, AS’ >

22 else

23 <name: r | status: ready ,

24 precords: (CL ; [ VID , false ]),

25 prop -ilist: IL, pnext: s(K), AS’ >

26 fi

27 insert ({ TG | SL }, [TG + 1.0, (RID <- nextSlot(s(L)))])

28 fi ... .

When the current time slot L is about to end, the message nextSlot(L) be-
comes ready for the RANDAO object to consume, which initiates the process of
advancing the state of the protocol to the next slot. There are three cases that
need to be considered depending on the value of L:

1. L > #CYCLE-LENGTH, meaning that the message’s time slot number exceeds
the number of slots in a round (slot numbering begins at 1), and thus, the
protocol has already processed all slots of the current round, and progress-
ing to the next slot would require advancing the the current round of the
game first. Therefore, The RANDAO contract object changes its status to
processing and samples a new list of proposers for the next round using
the seed S that was computed in the current round. The object resets the
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time slot count back to 1 and emits a self-addressed, zero-delay nextRound
message.

2. L == K, where K is the next-slot number stored in the RANDAO object,
which means that the slot number K was already advanced by successfully
processing a reveal some time earlier during this slot’s time window. In this
case, the state is not changed and a nextSlot(s(L)) message (with s the
successor function) is scheduled as normal to repeat this process for the next
time slot.

3. Otherwise, the slot number K stored in the object has not been advanced
before and, thus, either a reveal for the current time slot L was attempted
and failed or that a reveal was never received. In both cases, the RANDAO
object records that as a failure in the proposers record list, advances the slot
number K and schedules a nextSlot(s(L)) message in preparation for the
next time slot.

These cases are specified by the nested conditional structure shown in the rule.

5 Statistical Verification

We use the model R to formally and quantitatively evaluate how much an at-
tacker can bias randomness of the RANDAO process assuming various attacker
models and protocol parameters. In the analysis presented below, we assume a
95% confidence interval with size at most 0.02. We also assume no message drops
and random message transmission delays in the range [0.0, 0.1] time units (so
reveals, if made, are guaranteed to arrive on time).

5.1 Matching Score (MS)

TheMatching score (MS) is the number of attacker-controlled validators selected
as proposers in a round of the RANDAO process. The baseline value for MS
(assuming no attack) is given by the expectation of a binomial random variable
X with success probability p (the probability of a validator being compromised)
in k repeated trials (k is the length of the proposers list), which is:

EX[X] = kp (1)

As a temporal formula in QuaTEx, the property MS is expressed as:

ms(t) = if time() > t then countCompromised()

else �ms(t) fi ;

eval E[ms(t0)]

(2)

ms(t) is a recursively defined path expression that uses two state functions:
(1) time(), which evaluates to the time value of the current state of the protocol
(given by the scheduler object), and (2) countCompromised(), which evaluates
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Fig. 1. The expected number of attacker-controlled proposers in the proposers list
against execution time in time slots, assuming the attacker is attempting to maximize
the number of compromised proposers. The dashed lines represent the base values
(with no active attack) computed using Equation (1). The shaded areas visualize the
expected bias achievable by the attacker for the three di↵erent attack probabilities
plotted. We assume a proposers list of size 10, and a validator set of size (a) 10⇥ 500
and (b) 10⇥ 1000.

to the number of compromised proposers in the current state of the RANDAO
object. Therefore, given an execution path, the path expression ms(t) evalu-
ates to countCompromised() in the current state if the protocol run is complete
(reached the time limit); otherwise, it returns the result of evaluating itself in
the next state, denoted by the next-state temporal operator �. The number of
compromised proposers that an attacker achieves (on average) within the time
limit specified can be approximated by estimating the expected value of the
formula over random runs of the protocol, denoted by the query eval E[ms(t0)].

The analysis results for MS are plotted in the charts of Figure 1. We use
the notation a ⇥ b to denote the fact that the length of the proposers list
(CYCLE-LENGTH) is a and that there are a total of a ⇥ b participating valida-
tors in the configuration4. The dashed lines in the charts represent the base
values (with no active attack) computed using Equation (1) for di↵erent attack
probabilities p, while the plotted data points are the model’s estimates.

As the charts show, the attacker can reliably but minimally bias randomness
with this strategy. This, however, assumes that the attacker is able to a↵ord all
the skips that will have to be made in the process, since only after about 80
rounds or so, the attacker is able to gain an advantage of about 20% (over the

4 The specific values for a and b used in this section and Section 5.2 are chosen so that
the total size of the validator set a · b is large enough relative to the length of the
proposers list a so that the probability of picking a compromised proposer stays the
same (recall that the attack probability is fixed), while not too large to allow e�cient
analysis. This has the important consequence that the analysis results obtained are
representative of actual setups (where the set of validators is much larger than that
of the proposers), regardless of the exact proportion of proposers to validators.
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baseline). Nevertheless, an attacker that already controls a significant portion of
the validators can capitalize on that to speed up his gains, as can be seen from
the p = 0.3 attacker at around 100 rounds, compared with the weaker attackers.
Furthermore, by comparing the charts in Figure 1, we note that results obtained
for di↵erent proportions of proposers to validators are generally similar.

5.2 Last-Word Score (LWS)

This is the length of the longest attacker-controlled tail of the proposers list in a
round of the RANDAO process. We first compute a baseline value for LWS (as-
suming no attack). Let a be the event of picking an attacker-controlled validator,
which has probability p, and b the event of picking an honest validator b, having
probability (1 � p). Let the length of the proposers list be k. A compromised
tail in the proposers list corresponds to either a sequence of events a of length
j < k followed immediately by exactly one occurrence of event b, or a sequence
of events a of length exactly k (the whole list is controlled by the attacker).
Therefore, letting X be a random variable corresponding to the length of the
longest compromised tail, we have:

Pr[X = i] =

(
pi(1� p) i < k

pi i = k

Therefore, the expected value of X is

EX[X] =
k�1X

i=0

i · pi(1� p) + k · pk (3)

We then specify the property LWS using the following formula:

lws(t) = if time() > t then countCompromisedTail()

else � lws(t) fi ;

eval E[lws(t0)]

(4)

The formula uses the state function countCompromisedTail(), which counts the
number of proposers in the longest compromised tail in the proposers list of the
current state of the RANDAO object. As before, estimating the expectation ex-
pression E[lws(t0)] gives an approximation of the expected length of the longest
compromised tail that an attacker can achieve within the specified time limit.

The results are plotted in the charts of Figure 2. As Figure 2 shows, maximiz-
ing the length of the compromised tail can result in a steady and reliable e↵ect
on the proposers list. As the attack probability increases, the bias achieved can
be greater within shorter periods of time. For example, at around 60 rounds, the
bias achieved by a 0.1 attacker is negligible, while a 0.2 attacker is expected to
achieve 20% gains over the baseline (at around 0.32 compared with 0.25), and a
0.3 attacker achieves 60% gains (at around 0.7 compared with 0.43). Neverthe-
less, even at high attack rates, the charts do not show strong increasing trends,
suggesting that any gains more significant than those would require applying
reveal strategies for very extended periods of time.
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(a) LWS (10x500)
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(b) LWS (10x1000)

Fig. 2. The expected number of attacker-controlled proposers in the proposers list
against execution time in time slots, assuming the attacker is attempting to maximize
the length of the compromised tail. The dashed lines represent the base values (with no
active attack) computed using Equation (3). The shaded areas visualize the expected
bias achievable by the attacker for the three di↵erent attack probabilities plotted. We
assume a proposers list of size 10, and a validator set of size (a) 10 ⇥ 500 and (b)
10⇥ 1000.

6 Conclusion

We presented an executable formalization of the commit-reveal RANDAO scheme
as a probabilistic rewrite theory in rewriting logic. Through its specification
in Maude, we used the model to analyze resilience of RANDAO against pre-
computed reveal strategies by defining two quantitative measures of achievable
bias: the matching score (MS) and the last-word score (LWS), specified as tem-
poral properties in QuaTEx and analyzed using statistical model checking and
quantitative analysis with PVeStA. Further analysis could consider other sce-
narios with dynamic validator sets, unreliable communication media and ex-
tended network latency. Furthermore, the analysis presented does not explicitly
quantify the costs to the attacker, which can be an important economic defense
against mounting these reveal strategies. An extension of the model could keep
track of the number of skips, or specify a limit on these skips, so that the success
of an attack strategy can be made relative to the cost of executing it. Finally,
a holistic approach to analyzing quantitative properties of Serenity looking into
availability and attack resilience properties makes for an interesting longer-term
research direction.

Acknowledgements. We thank Danny Ryan and Justin Drake from the Ethereum
Foundation for their very helpful comments. This work was performed under the
first Ethereum Foundation security grant “Casper formal verification”[10].
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Abstract. Tezos is a blockchain launched in June 2018. It is written
in OCaml and supports smart contracts. Its smart contract language
is called Michelson and it has been designed with formal verification
in mind. In this article, we present Mi-Cho-Coq, a Coq framework for
verifying the functional correctness of Michelson smart contracts. As a
case study, we detail the certification of a Multisig contract with the
Mi-Cho-Coq framework.
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1 Introduction to Tezos

Tezos is a public blockchain launched in June 2018. It is mostly implemented in
OCaml [18] and its code is open source [3]. Like Ethereum, Tezos is an account
based smart contract platform. This section is a high-level broad overview of
Tezos to distinguishe it from similar projects like Bitcoin and Ethereum.

Consensus algorithm Unlike Bitcoin and Ethereum, Tezos’ consensus al-

gorithm is based on a Proof-of-Stake algorithm [2]: rights to produce new
blocks are given to accounts that own a stake. More precisely, there is a dele-
gation mechanism and the block-producing rights of each account are given in
probabilistic proportion to the number of tokens that have been delegated to this
account. Block producers have to make a security deposit that is slashed if their
behaviour looks malicious, for example if they produce two di↵erent blocks for
the same level (double spending attack).

On-chain voting Another key point of Tezos is its on-chain governance

mechanism. The codebase can be changed by a vote of the token holders via
their delegates. This helps preventing divisions amongst the community that
could lead to forks. Only a delimited part of the codebase, named the economic
ruleset or the economic protocol [15,16], can be changed. This part contains
the rules that define what a valid transaction is, what a valid block is, as well
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as how to choose between multiple chains. Thus, the economic ruleset contains,
amongst other things, the consensus algorithm, the language for smart contracts
and also the voting rules [4]. It does not contain the network and storage layers.
If a proposal is accepted, nodes need not to stop and restart: the new code is
downloaded from other peers, dynamically compiled and hot swapped. At the
moment, the voting procedure lasts approximately three months but that could
be changed in the future via a vote.

Focus on formal verification Our long-term ambition is to have certified
code in the whole Tezos codebase1 as well as certified smart contracts. The
choice of OCaml as an implementation language is an interesting first step:
OCaml gives Tezos good static guarantees since it benefits from OCaml’s strong
type system and memory management features. Furthermore, formally verified
OCaml code can be produced by a variety of tools such as F* [22], Coq [23],
Isabelle/HOL [19], Why3 [14], and FoCaLiZe [20]. Another specificity of Tezos
is the use of formally verified cryptographic primitives. Indeed the codebase uses
the HACL* library [24], which is certified C code extracted from an implementa-
tion of Low*, a fragment of F*. This article presents Mi-Cho-Coq, a framework
for formal verification of Tezos smart contracts, written in the Michelson pro-
gramming language. It is organized as follows: Section 2 gives an overview of
the Michelson smart contract language, the Mi-Cho-Coq framework is then pre-
sented in Section 3, a case study on a Multisig smart contract is then conducted
in Section 4, Section 5 presents some related workd and finally Section 6 con-
cludes the article by listing directions for future work.

The Mi-Cho-Coq framework, including the multisig contract described in Sec-
tion 4, is available at https://gitlab.com/nomadic-labs/mi-cho-coq/tree/
FMBC_2019.

2 Overview of Michelson

Smart contracts are Tezos accounts of a particular kind. They have a private
access to a memory space on the chain called the storage of the smart contract,
each transaction to a smart contract account contains some data, the parame-
ter of the transaction, and a script is run at each transaction to decide if the
transaction is valid, update the smart contract storage, and possibly emit new
operations on the Tezos blockchain.

Michelson is the language in which the smart contract scripts are written. The
Michelson language has been designed before the launch of the Tezos blockchain.
The most important parts of the implementation of Michelson, the typechecker
and the interpreter, belong to the economic ruleset of Tezos so the language can
evolve through the Tezos amendment voting process.

1 Note that since code changes must be approved by the Tezos community, we can
only propose a certified implementation of the economic ruleset.

https://gitlab.com/nomadic-labs/mi-cho-coq/tree/FMBC_2019
https://gitlab.com/nomadic-labs/mi-cho-coq/tree/FMBC_2019
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2.1 Design rationale

Smart contracts operate in a very constrained context: they need to be expres-
sive, evaluated e�ciently, and their resource consumption should be accurately
measured in order to stop the execution of programs that would be too greedy,
as their execution time impacts the block construction and propagation. Smart
contracts are non-updatable programs that can handle valuable assets, their is
thus a need for strong guarantees on the correctness of these programs.

The need for e�ciency and more importantly for accurate account of resource
consumption leans toward a low-level interpreted language, while the need for
contract correctness leans toward a high level, easily auditable, easily formalis-
able language, with strong static guarantees.

To satisfy these constraints, Michelson was made a Turing-complete, low
level, stack based interpreted language (à la Forth), enabling the resource mea-
surement, but with some high level features à la ML: polymorphic products,
options, sums, lists, sets and maps data-structures with collection iterators, cryp-
tographic primitives and anonymous functions. Contracts are pure functions that
take a stack as input and return a stack as output. This side-e↵ect free design
is an asset for the conception of verification tools.

The language is statically typed to ensure the well-formedness of the stack
at any point of the program. This means that if a program is well-typed, and if
it is being given a well typed stack that matches its input expectation, then at
any point of the program execution, the given instruction can be evaluated on
the current stack.

Moreover, to ease the formalisation of Michelson, ambiguous or hidden be-
haviours have been avoided. In particular, unbounded integers are used to avoid
arithmetic overflows and division returns an option (which is None if and only if
the divisor is 0) so that the Michelson programmer has to specify the behaviour
of the program in case of division by 0; she can however still explicitly reject the
transaction using the FAILWITH Michelson instruction.

2.2 Quick tour of the language

The full language syntax, type system, and semantics are documented in [1], we
give here a quick and partial overview of the language.

Contracts’ shape A Michelson smart contract script is written in three parts:
the parameter type, the storage type, and the code of the contract. Contract’s
code consists in one block of code that can only be called with one parameter,
but multiple entry points can be encoded by branching on a nesting of sum types
and multiple parameters can be paired into one.

When the contract is originated on the chain, it is bundled with a data
storage which can then only be changed by a contract successful execution. The
parameter and the storage associated to the contract are paired and passed to
the contract’s code at each execution, it has to return a list of operations and
the updated storage.
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Seen from the outside, the type of the contract is the type of its parameter,
as it is the only way to interact with it.

Michelson Instructions As usual in stack-based languages, Michelson instruc-
tions take their parameters on the stack.All Michelson instructions are typed as a
function going from the expected state of the stack, before the instruction evalua-
tion, to the resulting stack. For example, the AMOUNT instruction used to obtain
the amount in µtez of the current transaction has type S ! mutez: S meaning
that for any stack type S, it produces a stack of type mutez: S. Some instruc-
tions, like comparison or arithmetic operations, exhibit non-ambiguous ad-hoc
polymorphism: depending on the input arguments type, a specific implementa-
tion of the instruction is selected, and the return type is fixed. For example SIZE

has the following types: bytes: S ! nat: S
string: S ! nat: S

set elt: S ! nat: S
map key val: S ! nat: S
list elt: S ! nat: S

While computing the size of a string or an array of bytes is similarly imple-
mented, under the hood, the computation of map size has nothing to do with
the computation of string size.

Finally, the contract’s code is required to take a stack with a pair parameter -
storage and returns a stack with a pair operation list-storage:
(parameter_ty*storage_ty):[] ! (operation list*storage_ty):[].

The operations listed at the end of the execution can change the delegate
of the contract, originate new contracts, or transfer tokens to other addresses.
They will be executed right after the execution of the contract. The transfers
can have parameters and trigger the execution of other smart contracts: this is
the only way to perform inter-contract calls.

A short example - the Vote contract. We want to allow users of the
blockchain to vote for their favorite formal verification tool. In order to do that,
we create a smart-contract tasked with collecting the votes. We want any user
to be able to vote, and to vote as many times as they want, provided they pay a
small price (say 5 tez). We originate the contract with the names of a selection
of popular tools: Agda, Coq, Isabelle and K framework, which are placed in the
long-term storage of the contract, in an associative map between the tool’s name
and the number of registered votes (of course, each tool starts with 0 votes).

In the figure 1a, we present a voting contract, annotated with the state of
the stack after each line of code. When actually writing a Michelson contract,
development tools (including an Emacs Michelson mode) can interactively, for
any point of the code, give the type of the stack provided by the Michelson
typecheck of a Tezos node.

Let’s take a look at our voting program: First, the description of the storage
and parameter types is given on lines 1-2. Then the code of the contract is given.
On line 5, AMOUNT pushes on the stack the amount of (in µtez) sent to the
contract address by the user. The threshold amount (5tez) is also pushed on the
stack on line 6 and compared to the amount sent: COMPARE pops the two top
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1 storage (map string int); # candidates
2 parameter string; # chosen
3 code {
4 # (chosen, candidates):[]
5 AMOUNT; # amount:(chosen, candidates):[]
6 PUSH mutez 5000000; COMPARE; GT;
7 # (5 tez > amount):(chosen, candidates):[]
8 IF { FAIL } {}; # (chosen, candidates):[]
9 DUP; DIP { CDR; DUP };

10 # (chosen, candidates):candidates:candidates:[]
11 CAR; DUP; # chosen:chosen:candidates:candidates:[]
12 DIP { # chosen:candidates:candidates:[]
13 GET; ASSERT SOME;
14 # candidates[chosen]:candidates:[]
15 PUSH int 1; ADD; SOME
16 # (Some (candidates[chosen]+1)):candidates:[]
17 }; # chosen:(Some (candidates[chosen]+1)):candidates:[]
18 UPDATE; # candidates :[]
19 NIL operation; PAIR # (nil, candidates ):[]
20 }

(a)

{Elt "Agda" 0 ; Elt "Coq" 0 ; Elt "Isabelle" 0 ; Elt "K" 0}

(b)

Fig. 1: A simple voting contract a and an example of initial storage b

values of the stack, and pushes either -1, 0 or 1 depending on the comparison
between the value. GT then pops this value and pushes true if the value is 1.
If the threshold is indeed greater than the required amount, the first branch of
the IF is executed and FAIL is called, interrupting the contract execution and
cancelling the transaction.

If the value was false, the execution continues on line 9, where we prepare
the stack for the next action: DUP copies the top of the stack, we then manipulate
the tail of the stack while preserving it’s head using DIP: there, we take the right
element of the (chosen, candidates) pair with CDR, and we duplicate it again.
By closing the block guarded by DIP we recover the former stack’s top, and the
following line takes its left element with CAR, and duplicates it.

On line 12, we use DIP to protect the top of the stack again. GET then
pops chosen and candidates from the stack, and pushes an option containing
the number of votes of the candidate, if it was found in the map. If it was not
found, ASSERT SOME makes the program fail. On line 15, the number of votes
is incremented by ADD, and packed into an option type by SOME.

We then leave the DIP block to regain access to value at the top of the stack
(chosen). On line 18, UPDATE pops the three values remaining on top of the
stack, and pushes the candidates map updated with the incremented value for
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chosen. Finally, we push an empty list of operations with NIL operation, and
pair the two elements on top of the stack to get the correct return type.

3 Mi-Cho-Coq : a Verification Framework in Coq for

Michelson

Mi-Cho-Coq consists of an implementation of a Michelson interpreter in Coq as
well as a weakest precondition calculus à la Dijkstra [13].

Michelson syntax and typing in Coq Michelson’s type system, syntax and
semantics, as described in the main documentation, are fully formalised in Mi-
Cho-Coq.

The abstract syntax tree of a Michelson script is a term of an inductive type
which carries the script type :

Inductive instruction : list type ! list type ! Set :=
| NOOP {A} : instruction A A
| FAILWITH {A B a} : instruction (a :: A) B
| SEQ {A B C} : instruction A B ! instruction B C ! instruction A C
| IF {A B} : instruction A B ! instruction A B ! instruction (bool :: A) B
| LOOP {A} : instruction A (bool :: A) ! instruction (bool :: A) A ...

A Michelson code is usually a sequence of instructions (SEQ), which is one
of the instruction constructors. It has type instruction stA stB : stA and stB are
respectively the type of the input stack and of the output stack.

The stack type is a list of Michelson type constructions, defined in the type
inductive:

Inductive comparable type : Set :=
| nat | int | string | bytes | bool | mutez | address | key hash | timestamp.

Inductive type : Set :=
| Comparable type (a : comparable type) | key | unit | signature | operation
| option (a : type) | list (a : type) | set (a : comparable type)
| contract (a : type) | pair (a b : type) | or (a b : type) | lambda (a b : type)
| map (key : comparable type) (val : type)
| big map (key : comparable type) (val : type).

A full contract, for a given storage type storage and parameter type params
is an instruction of type

instruction ((pair params storage) :: nil ) ((pair (list operation) storage ) :: nil ).

Thanks to the indexing of the instruction inductive by the input and output
stack types, only well-typed Michelson instructions are representable in Mi-Cho-
Coq. This is very similar to the implementation of Michelson in the Tezos node
which uses a similar feature in OCaml: generalized algebraic datatypes.

To ease the transcription of Michelson contracts into Mi-Cho-Coq AST we use
notations so that contracts in Mi-Cho-Coq look very similar to actual Michelson
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code. The main discrepancy between Michelson and Mi-Cho-Coq syntax being
that due to parsing limitations, the Michelson semi-column instruction termina-
tor has to be replaced by a double semi-column instructions separator.

The ad-hoc polymorphism of Michelson instructions is handled by adding
an implicit argument to the corresponding instruction constructor in Mi-Cho-
Coq. This argument is a structure that carries an element identifying the actual
implementation of the instruction to be used. As the argument is implicit and
maximally inserted, Coq type unifier tries to fill it with whatever value can fit
with the known types surrounding it, ie the type of the input stack. Possible
values are declared through the Coq’s canonical structures mechanism, which is
very similar to (Coq’s or Haskell’s) typeclasses.

Michelson interpreter in Coq Michelson semantics is formalized in Coq as an
evaluator eval of type forall {A B : list type}, instruction A B ! nat ! stack A
! M (stack B) where M is the error monad used to represent the explicit failure
of the execution of a contract. The argument of type nat is called the fuel of the
evaluator. It represents a bound on the depth of the execution of the contract and
should not be confused with Michelson’s cost model which is not yet formalised
in Mi-Cho-Coq.

Some domain specific operations which are hard to define in Coq are axioma-
tized in the evaluator. These include cryptographic primitives, data serialisation,
and instructions to query the context of the call to the smart contract (amount
and sender of the transaction, current date, balance and address of the smart
contract).

A framework for verifying smart contracts To ease the writing of correct-
ness proofs in Mi-Cho-Coq, a weakest precondition calculus is defined as a func-
tion eval precond of type forall {fuel A B}, instruction A B ! (stack B ! Prop) !
(stack A ! Prop) that is a Coq function taking as argument an instruction and a
predicate over the possible output stacks of the instruction (the postcondition)
and producing a predicate on the possible input stacks of the instruction (the
precondition).

This function is proved correct with respect to the evaluator:

Lemma eval precond correct {A B} (i : instruction A B) fuel st psi :
eval precond fuel i psi st $
match eval i fuel st with Failed ) False | Return a ) psi a end.

Note that the right-hand side formula is the result of the monad transformer
of [6] which here yields a simple expression thanks to the absence of complex
e↵ects in Michelson.

A short example - the Vote contract We give below, as an example, a formal
specification of the voting contract seen previously. We want the contract to take
into account every vote sent in a transaction with an amount superior to 5tez.
Moreover, we want to only take into account the votes toward an actual available



8 Authors Suppressed Due to Excessive Length

choice (the contract should fail if the wrong name is sent as a parameter). Finally,
the contract should not emit any operation.

In the following specification, the precondition is the condition that must
be verified for the contract to succeed. The postcondition fully describes the
new state of the storage at the end of the execution, as well as the potentially
emitted operations. amount refers to the quantity of µtez sent by the caller for
the transaction.

Precondition: amount � 5000000 ^ chosen 2 Keys(storage)
Postconditions: returned operations = [ ] ^

8 c, c 2 Keys(storage) () c 2 Keys(new storage) ^
new storage[chosen] = storage[chosen] + 1 ^
8 c 2 Keys(storage), c 6= chosen ) new storage[c] = storage[c]

Despite looking simple, proving the correctness of the vote contract still needs
a fair number of properties about the map data structure. In particular we need
some lemmas about the relations between the mem, get and update functions,
which we added to the Mi-Cho-Coq library to prove this contract.

Once these lemmas are available, the contract can easily be proved by study-
ing the three di↵erent situations that can arise during the execution : the contract
can fail (either because the sender has not sent enough tez or because they have
not selected one of the possible candidates), or the execution can go smoothly.

4 A case study : the Multisig Contract

The multisig contract is a typical example of access-control smart contract. A
multisig contract is used to share the ownership of an account between several
owners. The owners are represented by their cryptographic public keys in the
contract storage and a pre-defined threshold (a natural number between 1 and
the number of owners) of them must agree for any action to be performed by
the multisig contract.

Agreement of an owner is obtained by requiring a cryptographic signature
of the action to be performed. To ensure that this signature cannot be replayed
by an attacker to authenticate in another call to a multisig contract (the same
contract or another one implementing the same authentication protocol), a nonce
is appended to the operation before signing. This nonce consists of the address
of the contract on the blockchain and a counter incremented at each call.

Michelson Implementation To be as generic as possible, the possible actions
of our multisig contract are:

– produce a list of operations to be run atomically
– change the threshold and the list of owner public keys

The contract features two entrypoints named default and main. The default
entrypoint takes no parameter (it has type unit) and lets unauthenticated users
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send funds to the multisig contract. The main entrypoint takes as parameters
an action, a list of optional signatures, and a counter value. It checks the va-
lidity and the number of signatures and, in case of successful authentication, it
executes the required action and increment the counter.

The Michelson script of the multisig contract is available at [10]. The code
of the default entrypoint is trivial. The code for the main entrypoint can be
divided in three parts: the header, the loop, and the tail.

The header packs together the required action and the nonce and checks that
the counter given as parameter matches the one stored in the contract.

The loop iterates over the stored public keys and the optional signatures
given in parameter. It counts and checks the validity of all the signatures.

Finally the contract tail checks that the number of provided signatures is
at least as large as the threshold, it increments the stored counter, and it runs
the required action (it either evaluates the anonymous function passed in the
contract parameter and emits the resulting operations or modifies the contract
storage to update the list of owner public keys and the threshold).

Specification and Correctness Proof Mi-Cho-Coq is a functional verifica-
tion framework. It is well-suited to specify the relation between the input and
output stacks of a contract such as multisig but it is currently not expressive
enough to state properties about the lifetime of a smart contract nor the inter-
action between smart contracts. For this reason, we have not proved that the
mutlisig contract is resistant to replay attacks. However, we fully characterise
the behaviour of each call to the multisig contract using the following specifica-
tion of the multisig contract where env is the evaluation environment containing
among other data the address of the contract self env and the amount of the
transaction amount env.

Definition multisig spec (parameter : data parameter ty) (stored counter : N)
(threshold : N) (keys : Datatypes.list (data key))
(new stored counter : N) (new threshold : N)
(new keys : Datatypes.list (data key))
(returned operations : Datatypes.list (data operation))
(fuel : Datatypes.nat) :=

let storage : data storage ty := (stored counter , (threshold , keys)) in
match parameter with
| inl tt )
new stored counter = stored counter ^ new threshold = threshold ^
new keys = keys ^ returned operations = nil

| inr ((counter, action ), sigs ) )
amount env = (0 Mutez) ^ counter = stored counter ^
length sigs = length keys ^
check all signatures sigs keys (fun k sig )

check signature env k sig
(pack env pack ty (address env parameter ty (self env),

(counter, action )))) ^
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(count signatures sigs >= threshold)%N ^
new stored counter = (1 + stored counter)%N ^
match action with
| inl lam )
match (eval lam fuel (tt , tt )) with
| Return (operations , tt ) )
new threshold = threshold ^ new keys = keys ^
returned operations = operations

| ) False
end

| inr (nt, nks) )
new threshold = nt ^ new keys = nks ^ returned operations = nil

end end.

Using the Mi-Cho-Coq framework, we have proved the following theorem:

Lemma multisig correct (params : data parameter ty)
(stored counter new stored counter threshold new threshold : N)
(keys new keys : list (data key))
(returned operations : list (data operation)) (fuel : nat) :

let storage : data storage ty := (stored counter , (threshold , keys)) in
let new storage : data storage ty :=
(new stored counter, (new threshold, new keys)) in

17 length keys + 14  fuel !
eval multisig (23 + fuel) ((params, storage ), tt )
= Return ((returned operations , new storage), tt ) $

multisig spec params stored counter threshold keys
new stored counter new threshold new keys returned operations fuel .

The proof relies heavily on the correctness of the precondition calculus. The
only non-trivial part of the proof is the signature checking loop. Indeed, for
e�ciency reasons, the multisig contract checks the equality of length between
the optional signature list and the public key list only after checking the validity
of the signature; an optional signature and a public key are consumed at each
loop iteration and the list of remaining optional signatures after the loop exit
is checked for emptiness afterward. For this reason, the specification of the loop
has to allow for remaining unchecked signatures.

5 Related Work

Formal verification of smart contracts is a recent but active field. The K frame-
work has been used to formalize [17] the semantics of both low-level and high-
level smart contract languages for the Ethereum and Cardano blockchains. These
formalizations have been used to verify common smart contracts such as Casper,
Uniswap, and various implentation of the ERC20 and ERC777 standards.

Ethereum smart contracts, written in the Solidity high-level language, can
also be certified using a translation to the F* dependently-typed language[8].
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The Zen Protocol[5] directly uses F* as its smart contract language so that
smart contracts of the Zen Protocol can be proved directly in F*. Moreover,
runtime tracking of resources can be avoided since computation and storage
costs are encoded in the dependent types.

The Scilla [21] language of the Zilliqa blockchain has been formalized in Coq.
This language is higher-level (but also less featureful) than Michelson. Its for-
malization includes inter-contract interactions and contract’s lifespan properties.
This has been used to show safety properties of a crowdfounding smart contract.

6 Limits and Future Work

As we have seen, the Mi-Cho-Coq verification framework can be used to certify
the functional correctness of non-trivial smart contracts of the Tezos blockchain
such as the multisig. We are currently working on several improvements to extend
the expressivity of the framework; Michelson’s cost model and the semantics of
inter-contract interactions are being formalised.

In order to prove security properties, such as the absence of signature replay
in the case of the multisig contract, an adversarial model has to be defined. This
task should be feasible in Coq but our current plan is to use specialized tools
such as Easycrypt[7] and ProVerif[9].

No code is currently shared between Mi-Cho-Coq and the Michelson eval-
uator written in OCaml that is executed by the Tezos nodes. We would like
to raise the level of confidence in the fact that both evaluators implement the
same operational semantics. We could achieve this either by proposing to the
Tezos stakeholders to amend the ecomomic protocol to replace the Michelson
evaluator by a version extracted from Mi-Cho-Coq or by translating to Coq the
OCaml code of the Michelson evaluator using a tool such as CoqOfOCaml [12]
or CFML [11] and then prove the resulting Coq function equivalent to the Mi-
Cho-Coq evaluator.

Last but not least, to ease the development of certified compilers from high-
level languages to Michelson, we are working on the design of an intermediate
compilation language called Albert that abstracts away the Michelson stack.
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Abstract 

Callbacks in Smart Contracts on blockchain-based distributed ledgers are a potential source of 
security vulnerabilities: callbacks may lead to reentrancy, which has been previously exploited to 
steal large sums of money. Unfortunately, analysis tools for Smart Contracts either fail to support 
callbacks or simply detect and disallow patterns of callbacks that may lead to reentrancy. As a result, 
many authors of Smart Contracts avoid callbacks altogether, and some Smart Contract programming 
languages, including Solidity, recommend using primitives that avoid callbacks. Nevertheless, 
reentrancy remains a threat, due to the utility of and frequent reliance on callbacks in Smart 
Contracts. 

 
In this paper, we propose the use of type invariants, a feature of some languages supporting 

formal verification, to enable proof of correctness for Smart Contracts, including Smart Contracts 
that permit or rely on callbacks. Our result improves upon existing research because it neither 
forbids reentrancy nor relies on informal, meta-arguments to prove correctness of reentrant Smart 
Contracts. We demonstrate our approach using the SPARK programming language, which supports 
type invariants and moreover can be compiled to relevant blockchains. 

 

Introduction 

Smart contracts (Szabo, 1997) are protocols that are intended to facilitate, verify or enforce the negotiation or 
performance of a contract. Within a blockchain-based distributed ledger (Nakamoto, 2008), smart contracts are 
realized by autonomous agents that always execute specific functionality in response to defined events, such as the 
receipt of a message or transaction ( Ethereum Foundation, 2019). Smart contracts make their behavior available 
through public interfaces, are typically small, and have no global state. However, their composition, especially through 
callbacks, leads to complex and difficult-to-predict behavior — behavior that may be malicious, as illustrated in the 
high-profile attack on the Ethereum DAO (Daian, 2016).  

 
Callbacks arise when one or more of the parties interacting with a smart contract is another smart contract: a 

message or transaction sent to a public interface of the first smart contract, S1, may result in the sending of a message 
or transaction to a public interface of the second smart contract, S2, and so on. Callbacks are useful and quite common 
(Grossman, et al., 2017), but may also lead to reentrancy: a public interface of S1 may send a message to the public 
interface of S2, which may send a message back to S1 through the same public interface.  

 
Reentrancy may lead to data-integrity violations. Data local to S1 may be in an inconsistent state when control flow 

is transferred to S2. S2 then calls S1. Upon reentry to S1, the data remains in an inconsistent state, likely violating the 
assumptions under which the smart contract was judged to be correct. The attack on the Ethereum DAO was essentially 
an attack based on reentrancy that exploited inconsistent data. The chain of callbacks leading to reentrancy may be 
arbitrarily long. Moreover, new smart contracts may be added to the blockchain at any time. Thus, in general, authors 



of smart contracts must assume that any potential callback may result in reentrancy. Current approaches that address 
this problem focus on identifying potential callbacks with static analysis (Kalra, Goel, Dhawan, & Sharma, 2018), use 
gas limits to restrict the computation of a callback and limit recursion depth ( Ethereum Foundation, 2019), or rely on 
meta-arguments to prove correctness of smart contracts with external calls (Grossman, et al., 2017). 

 
However, the threat to data integrity posed by reentrancy from callbacks or by recursion is not new and has received 

considerable attention by the formal verification community, although not in the context of smart contracts. In object-
oriented languages, for example, callbacks are ubiquitous and play an important role in many design patterns (Gamma, 
Helm, Johnson, & Vlissides, 1994). Likewise in procedural languages, if the entirety of the code cannot be assumed 
to be available for analysis, any call to unknown code may result in recursion. The answer presented by the formal-
verification community to address this issue is the use of invariants on critical state. Invariants ensure that, outside of 
specifically identified sections of code, data-integrity properties are always enforced.  

 
In this paper, we apply invariants to critical data local to smart contracts and thus derive a means to prove the 

correctness of smart contracts, even in the presence of callbacks and potential reentrancy. We demonstrate our 
approach using the SPARK programming language and also show that our method can be applied in other languages 
that support formal verification. 

Context 

The Token contract 
A typical smart contract is the token contract. It allows sharing money or other tokens accessed by several accounts. 

At its heart the token contract is a map from accounts (identified by addresses) to the amount of tokens they have 
access to: 

 
type Balances_Type is array (Address) of Natural; 
Balances : Balances_Type; 

 
There are functions to transfer tokens between users, adding tokens to one’s allowance, and getting tokens paid out. 
In the simplest case, tokens are just ether. But note that the map above is only the contract’s view of reality and of 

how many ether every user has access to. Bugs in the smart contract can cause a deviation between the reality and the 
token contract’s vision of reality. For example, it is implicit in the above definition that the token contract (which is 
itself an account) holds at least as much money as the sum of the balances for all users. If there is a bug in the smart 
contract, this may not actually be the case. 

 

Reentrancy, the problem 
A possible version of the token contract’s payout procedure looks like this: 
 

Procedure Payout (Sender : Address; Amount : Natural) is 
begin 
   if Balance (Sender) >= Amount then 
      Send (Sender, Amount); 
      Balance (Sender) := Balance (Sender) - Amount; 
    end if; 
end Payout; 

 
The Sender object is automatically filled out by the calling mechanism of the language and corresponds to the 

invoking entity. We assume here that the sender is also a smart contract, because that is the interesting case. The Send 
procedure is also a primitive of the smart contract infrastructure. In the solidity language, there are several ways to 



send ether, we assume here that Send sends the money in such a way that the fallback function of the receiving contract 
is triggered. We ignore discussions of gas limits here and assume that the fallback function has as much gas available 
as required. 

 
This version of the program is vulnerable to a reentrancy attack. In detail, it works this way. The attacker creates 

another smart contract as follows: 
 

1. The attacking contract first puts some small amount of money inside the token contract using a Deposit 
functionality (not shown here). 

2. The attacking contract calls the Payout procedure of the token contract, setting the Sender object to the 
smart contract itself, using an Amount which is less or equal to the deposited value. 

3. This causes the condition in the Payout procedure to succeed and the token contract to send money to the 
attacking contract; 

4. Sending money triggers the fallback code of the attacking contract. The fallback code simply calls Payout 
again, with the same amount. 

5. As Payout has not yet updated the internal state of the token contract, the if- condition is still true and the 
token contract sends money again. 

6. This again triggers the fallback code of the attacking contract … 
 
The recursion continues until the transaction chain runs out of gas or the token contract doesn’t have any ether any 

more. 
 
A fix for the token contract is to update the internal state before sending any money: 
 

Procedure Payout (Sender : Address; Amount : Natural) is 
begin 
   if Balance (Sender) >= Amount then 
      Balance (Sender) := Balance (Sender) - Amount; 
      Send (Sender, Amount); 
    end if; 
end Payout; 

 
Reentrancy can still occur, but now the attacker cannot circumvent the protecting condition, so he will be able only 

to withdraw his own balance. 
Of course the Token contract is just one example of a contract that may be vulnerable to a reentrancy attack. Any 

contract that calls code of unknown other contracts is potentially vulnerable. 

Existing Protections and Related Work 

Reentrancy attacks in the Ethereum network are real and have cost a lot of money for the victims in the past. So 
measures have been taken to avoid the problem. To the best of our knowledge, these measures mostly consist of 
excluding reentrancy altogether (see also the section concerning related work). For example, the most commonly used 
functions for transferring ether now have a gas limit, so that the receiving contract can do only very few actions (in 
particular not call other contracts). However, as Grossman et al (Grossman, et al., 2017) show, callbacks are used in 
a large number of contracts and cannot be completely avoided. 

 

Related Work 

There is a vast body of work related to data invariants in object-oriented programming (Barnett, DeLine, Fähndrich, 
Leino, & Schulte, 2004; Leino & Müller, 2005), which lead to the formulation of class invariants in JML (Leavens, 
2019). Our work is also based on this existing research and applies it to callbacks in smart contracts. 



Existing formal methods for smart contracts that address this vulnerability simply forbid all reentrancy. This is 
usually achieved by only supporting transfers of ether that do not trigger the fallback code of the recipient (or specify 
a very small gas limit that does not allow much code execution), or excluding the problem from the analysis. This is 
the case for the ZEUS system of (Kalra, Goel, Dhawan, & Sharma, 2018), where a warning is signaled for any code 
that may contain reentrancy. 

Bhargavan et al (Bhargavan, Delignat-Lavaud, Fournet, Gollamudi, & Gonthier, 2016) present an F*-based method 
to apply formal verification to smart contracts. They discuss reentrancy and show that their system detects reentrancy, 
but do not present any solution to the issue. 

Grossman et al (Grossman, et al., 2017) present the theoretical notion of effectively callback free contracts, whose 
state changes, even in the presence of callbacks (or reentrancy) happen in an order that can also be achieved by a 
callback-free sequence of calls. Such callbacks are harmless wrt. the type of reentrancy attack discussed here. Their 
paper mainly concentrates on online detection of violations of this property, but they also have a section of formal 
verification of a contract using Dafny (Leino K. , 2010). However, Dafny does not support object or class invariants, 
so their Dafny-verification uses a meta-argument to remove some effects from calls that might contain callbacks. Our 
method can be seen as an in-language way to show that a contract is effectively callback free, which does not rely on 
meta-arguments. 

Using SPARK type invariants to deal with Callbacks 

Quick overview over SPARK 

SPARK (McCormick & Chapin, 2015) is a subset of Ada (Barnes, 2012) and targets mainly embedded applications. 
It has strong support for formal verification. 

Basic annotations for proof 
SPARK has built-in support for formal verification. One basic feature is pre- and postconditions, as well as global 

annotations that can be attached to a procedure declaration: 
 

procedure Add_In_Z (X, Y : Integer) 

with Global     => (In_Out => Z), 

     Post       => (Z = Z’Old + X + Y); 
 
Extra information can be attached to a procedure using the with keyword. This is used to attach the information 

Global, which says that this procedure reads and writes the global variable Z. Also, we attached the information Post, 
which says that the new value of this variable Z is the sum of the old value of Z and the values of X and Y (we ignore 
concerns of arithmetic overflow in this example). 

SPARK can formally verify that functions indeed respect the attached information such as Global and Post, similar 
to e.g. Dafny or Why3; in fact the formal verification engine in SPARK is based on Why3. 

Private types 
SPARK allows the user to separate a project into packages, each package having a package specification, visible 

by others, and an implementation which is private to this package. The package specification can contain so-called 
private types, or abstract types in other languages, where clients of the package cannot see the actual implementation 
of the type, only that the type exists: 

type T is private; 

… 
type T is new Integer; 

 

Type invariants 
In SPARK, one can attach to type invariants to the implementation of a private type, for example as follows: 



 
type T is private; 

… 
type T is record 

   A : Integer; 

   B : Integer; 

End record 

With Type_Invariant => T.A < T.B; 

 

The idea is that type invariants must be maintained by the package. The package is allowed to assume the type 
invariant on input of any of its procedures or functions, and is allowed to temporarily break the invariant. However, it 
has to reestablish the invariant whenever an object leaves the scope of the package. This can be either by returning 
such an object to the caller, or by passing the object to a procedure or function that belongs to another package. The 
SPARK tool can prove that type invariants are correctly used and enforced by the package. SPARK type invariants 
have many restrictions; we mostly ignore these restrictions in the paper to keep a natural flow to the paper, but a 
dedicated section explains how we circumvented them to be able to actually use the SPARK tool. 

Ghost code 
Any declaration in SPARK (e.g. a type, object or procedure) can be annotated as ghost. This means that the 

declaration is only used for the purposes of verification, and does not contribute to the functionality of the code. This 
property is checked by the compiler and SPARK tools. A well-defined set of statements, such as assignments to ghost 
objects and calls to ghost procedures, are considered ghost code by the compiler and removed when compiling the 
program1.  The following code example makes sure that the procedure Do_Some_Work is called after calling 
Initialize first. 

 
Initialized : Boolean := False with Ghost; 

 

procedure Initialize with 

   Post => Initialized; 

 

procedure Do_Some_Work with 

  Pre => Initialized; 

     
procedure Initialize is 

begin 

   ...  Do some initialization here ... 

   Initialized := True;  

end Initialize; 

 

Adding annotations to the Payout procedure 
The first step to apply formal verification would be to add pre- and postconditions to the payout procedure. Here is 

a first attempt: 
 

Procedure Payout (Sender : Address; Amount : Natural) 
with Post =>  
   (for all Addr of Address =>  
       if Addr = Sender and then Balance’Old (Addr) >= Amount  
       then Balance (Addr) = Balance’Old (Addr) - Amount 

 
1 The compiler can also be configured to compile the application with ghost code enabled, which can be useful for dynamic 

checking of properties e.g. during unit testing. 



       else Balance (Addr) = Balance’Old (Addr)); 
 
This postcondition summarizes the naive understanding of what Payout does: it sends a fixed amount of money 

to Sender, updating the Balance variable as well. As is common in systems that are based on deductive verification, 
one needs to specify also what remains unchanged. Here, Balance is only changed for the Sender, and only when the 
amount is actually sent (that is, actually available to be paid out). 

To prove this postcondition, we also need to explain what Send is doing. In SPARK terms this means writing pre- 
and postconditions for the Send procedure, and Global annotations. Global annotations are frame conditions, a 
fundamental element of proof tools for imperative languages. They say what global state can potentially be modified 
by the procedure. It turns out Send can have quite a large effect, given that Send can execute completely unknown 
code. The Payout procedure might well attempt to send money to some smart contract that was added to the blockchain 
at a later stage. Also we have seen that via reentrancy, Send can even modify our own state. We don’t really care about 
the state of any other smart contract here, but we do care about the state of our own contract. So we have no choice 
but to annotate Send with this global annotation: 

 
Procedure Send (Addr : Address; Amount : Natural) 
with Global => (In_Out => Balance); 

 
At this stage, we can’t really add any information to Send in the form of a postcondition on how it changes the 

state. After all, Send may call any procedure of the token contract, via any of the public procedures or functions of the 
contract. 

 
However, now there is no chance that we can prove the postcondition of Payout, because Send can change our own 

state, and in an unknown way! Moreover, looking at the postcondition we wrote for Payout, it is wrong anyway, even 
for the corrected code. Via reentrancy, the sender can transfer more money than just Amount, though in the corrected 
version the attacker cannot exceed his balance. We need to go back to the basics and understand the difference between 
the original version of Payout and the corrected one. 

Why the fix works 
For the following, we now assume that Send contains two actions, that are executed in this order: 

1. The actual sending of ether from the sender to the recipient; 
2. The execution of the fallback code of the recipient. 

 
The issue with the original version of Payout was that in the second step, the global state of the token contract was 

in an inconsistent state. The money was already sent, but the Balance map hadn’t been updated yet. The fallback code 
can be executed in this inconsistent state, and that’s why the if-condition in Payout becomes useless. 

Now it is easy to see why the fix works: Now both the update to the token state as well as the ether transfer have 
been done when calling the fallback code. When the fallback code is executed, the state of the token contract is 
consistent. While the fallback code can still cause reentrancy, there should be no more “surprises”. 

Grossman et al (Grossman, et al., 2017) call the corrected version effectively call-back free, because the state 
changes happen in such a way that they could also be achieved by a sequential series of calls to the interface of the 
object, without any reentrancy. This is not the case in the incorrect version, where the inconsistent sequence of state 
changes can only be achieved via reentrancy. 

In SPARK, we can model the two steps of Send as follows. We introduce ghost state for sent tokens and wrap the 
Send procedure as follows: 

 
Sent : Balances_Type with Ghost; 
 

procedure Wrap_Send (Addr : Address; Amount : Natural) is 
begin 
  Sent (Addr) := Sent (Addr) + Amount; 
  Send (Addr, Amount);   



end Send; 
 
This also requires to update the global effect of Send to include Sent. Here is the a summary of the changes: 
 

procedure Send (Addr : Address; Amount : Natural) 
With Global => (In_Out => (Balance, Sent)); 

 
procedure Wrap_Send … --  as above 

 
procedure Payout (Sender : Address; Amount : Natural) is 
begin 
   if Balance (Sender) >= Amount then 
      Balance (Sender) := Balance (Sender) - Amount; 
      Wrap_Send (Sender, Amount); 
    end if; 
end Payout; 

 

The solution in SPARK 
So to prove the correctness of the corrected version, we need to: 

1. Come up with a criterion for the data to be consistent; 
2. Prove that the data is consistent whenever the control flow leaves the token contract, either via a regular 

return statement, or via a call to other code. 
 
For (1), concentrating only on the Payout procedure, it is enough to say that for each address, the sum of the money 

sent and the balance should remain constant. A way of saying that it stays constant is to say that it is equal to some 
other quantity which stays unmodified during the whole computation. Let’s represent this quantity by a new array K: 

 
K : Balances_Type with Ghost; 

 
For (2), luckily, the SPARK language already has a construct that does exactly that. It is called a type invariant, 

that is a property attached to a type, that should hold at certain points. Simply expressing the property of (1) as a type 
invariant and attaching it to the right type will do exactly what we need. We can express our invariant of the relevant 
data like this: 

 

(for all A of Address => K (A) = Balance (A) + Sent (A)) 

 

That is all. We can now remove the postcondition of Payout2. The final version can be proved by SPARK in a few 
seconds; the incorrect version (by switching the two statements in the if-block) is correctly not proved, because the 
type invariant cannot be established before calling Send. 

 

Some limitations of SPARK and their workarounds 
As mentioned, we have described a solution which uses some features that SPARK doesn’t actually support (but 

could). First, type invariants are attached to types, while we would like to attach them to objects, or maybe to the 
package itself. Then, type invariants can’t mention global objects, while the invariant we showed mentions the three 
global objects Balance, Sent, and K. 

 
2 We can’t really express anything useful in the postcondition here. Any public function of the Token contract might be called via 

reentrancy, updating the state in a consistent but unknown way. 



We can work around these two annoyances simply by creating a record type which contains these three variables 
as fields. We attach the type invariant to this type: 

 

Type Data_Type is private; 

... 

type Data_Type is record 

   Balance : Balance_Type; 

   Sent    : Balance_Type; 

   K       : Balance_Type; 

end record 

with Type_Invariant =>  

  (for all A of Address => K (A) = Balance (A) + Sent (A)); 

 
This works well. One further limitation is that we now cannot specify the Ghost status of Sent and K anymore, 

because currently Ghost status cannot be set for individual fields of a record. But the entire record cannot be ghost, 
because the Balance data is required to be present during execution. 

The last limitation is that we cannot create global variables of a type which has a type invariant. So we need to add 
a parameter of type Data_Type to all relevant procedures, including the Send wand Wrap_Send procedures. 

 
Reasoning in SPARK is strict on a per-procedure basis; this means that adding a wrapper such as Wrap_Send 

potentially increases the verification effort, as the wrapper would need annotations and separate proofs. However, 
local procedures with no annotations are automatically inlined by SPARK. So we deliberately do not add any pre- and 
postconditions to Wrap_Send. 

 

Compilation of SPARK to Blockchain virtual machines 

SPARK is a subset of Ada, so if we can compile Ada to a blockchain, we are good. A direct compiler from Ada to 
(say) EVM does not exist, but various indirect ways are possible. The easiest way is to use go from Ada to LLVM via 
the gnat-llvm (Charlet, 2018) tool. The LLVM intermediate representation can then be translated to Solidity using 
Solidify, a tool that can generate Solidity code from LLVM (Kothapalli, 2017). Finally, we can use the Solidity 
compiler to translate to EVM bytecode. ( Ethereum Foundation, 2019) 

Other languages that support reasoning about callbacks 

SPARK is not the only tool to have both type invariants and ghost code. We give a non-exhaustive overview over 
other languages and tools that would also support this style of reasoning. 

Why3 (Filliâtre & Paskevich, 2013) is a well-known research tool for formal verification. There is ongoing work 
to support compilation to the EVM bytecode (Nehai & Bobot, 2019). Also, Why3 has support for type invariants and 
ghost code, although the rules are a bit different from the ones in SPARK. One main difference is that Why3 has no 
notion package encapsulation of abstract types, that is, a type in Why3 is either abstract for everybody, or the definition 
of the type fully visible to everybody. So there is no notion of scope for a type invariant, and type invariants are 
checked at every function boundary. We suspect that this is a bit too restrictive for realistic contracts. Our example, if 
the Wrap_Send function is inlined,  should work in the same way in Why3. Similar to SPARK, the type invariant has 
to be attached to a single type, so one has to introduce a record type that holds all relevant data. 

The Java modeling language JML (Leavens, 2019) has support for class invariants and ghost code, so the code 
shown in this paper should be easy to translate to JML and should work there, too. In addition, the JML language 
allows to specify an effect called “everything”, which is a convenient way to to say that a call may write “any” visible 
object. In SPARK and Why3, the user has to manually deduce the relevant set of objects, and annotate Send correctly. 

This style of verification using type or class invariants could be simulated in a language without type invariants 
(such as Dafny) by repeating the invariant as appropriate in pre- and postconditions and intermediate assertions. But 



this would require a meta-argument to show that the reasoning is correct; also it would be very error-prone. An 
intermediate assertion, for example, could be omitted by accident, and the tool would not be able to detect the error. 

Conclusion 

Research in deductive verification has already tackled the issue of callbacks and reentrancy, but to our knowledge 
this research had never been applied to smart contracts. We have shown that the language feature of type invariants 
enables deductive verification of smart contracts even in the presence of callbacks, including reentrancy. This result 
improves upon existing research, that either excludes callbacks, or requires a meta-argument to remove effects. Our 
paper has used SPARK to illustrate the running example, but Why3 and JML have similar language features and could 
also support this style of reasoning.  Our conclusion is that a language for formal verification of smart contracts should 
have support for type, object or class invariants to efficiently deal with callbacks and reentrancy issues. 
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Abstract. Bitcoin is still the most widely used cryptocurrency. A big
part of Bitcoin’s appeal is that it maintains a distributed ledger for trans-
actions known as the blockchain. Miners receive a fee for every block of
transactions that they mine, and should expect a reward proportional
to the computational power they provide to the network. Eyal and Sirer
introduced seflish mining, a strategy timing the publication of blocks to
give them a significant edge in profits. This paper models the behavior
of honest and selfish mining pools in Uppaal, and analyses properties
of the mining process in the presence of network delay. This shows what
e↵ects selfish mining would have on the share of profits, but also on the
number of orphaned blocks in the blockchain. This analysis allows us to
compare those results to known results from literature and to real world
data. This analysis shows that it is essential to take into account that
there does not exist a single view of the blockchain.

Keywords: Bitcoin, Bitcoin mining, Selfish mining, Uppaal

1 Introduction

Bitcoin [3,11] is at the time of writing the most used cryptocurrency [5] by market
capitalisation. Miners in the Bitcoin network are incentivised by the reward that
they receive for validating new blocks of transactions. The aim is that every
miner receives its fair share of said reward for the computational e↵ort they
perform for the network.

The Bitcoin protocol does not specify when miners must publish their newly
found blocks. The most basic strategy is to publish them immediately after the
miner finds them. This is referred to as the honest strategy.

Eyal and Sirer introduced a strategy for publishing newly found blocks called
selfish mining [8]. It forces honest miners to waste computational power by
waiting strategically and responding to what other miners in the network find
and publish. Eyal and Sirer provide in [8] pseudo-code for selfish mining, along
with a mathematical model of the forking behaviour of the blockchain, and an
additional model for the rewards. They compute the expected rewards in the



steady state, i.e. in the long run, depending on the share of the selfish pool in
the computational power, and the share of races the selfish pool will win in case
there are competing forks. For this, they computed a threshold for which selfish
mining will increase the profit of the miner. Below this threshold, selfish mining
will actually incur a penalty for the selfish miner.

This paper presents an Uppaal-SMC model for selfish mining. It models
a blockchain network as a network of nodes, each with their own copy of the
blockchain. The model includes stochastic network delays, which means that on
average it will take a while before new blocks are adopted by the network. These
aspects are absent from the Eyal and Sirer models. Uppaal-SMC can then
analyse the behaviour of the network and the evolution of the blockchain over
the simulation time – one day – and compare this with historical data obtained
from the real blockchain. In particular, how selfish mining a↵ects the number of
expected forks, and how this is distinguished from the frequency of forks in the
presence of selfish miners.

Chaudary et al. used Uppaal in [7] to model majority attacks. Their paper
focuses on blockchain forking and included a detailed model of the blockchain.
In [9] the same authors present a simplified version of the model presented in
this paper to analyse a particular type of majority attack, intended to enforce a
new Bitcoin standard. Uppaal was also used by Andrychowicz et al. to verify
the security of Bitcoin contracts, and to repair several issues in the protocol [6].

Sapirshtein et al. mathematically investigate bounds for which selfish min-
ing is profitable and optimize the original strategy [13]. They show that selfish
mining can be optimized, such that the threshold above which the strategy is
profitable is lower than described in the original paper [8]. Heilman et al. used
Monte-Carlo simulation to investigate eclipse attacks and proposed countermea-
sures that will reduce the chances of such attacks to succeed [10]. Neudecker
presents a full-scale simulation model of Bitcoin to study partition attacks [12].

The next section will describe selfish mining and its pseudo-code implemen-
tation. Section 3 describes the Uppaal-SMC model, and Section 4 the results
of the analysis. Section 5 will conclude with a discussion of future work.

2 Selfish Mining

2.1 Bitcoin Mining Process

Bitcoin is a distributed and decentralized cryptocurrency [3,11] with a shared
ledger of transactions which is stored in an append-only chain of blocks called the
blockchain. A block contains a group of transactions, the hash of the preceding
block, and a nonce. Since the block also includes the hash of the preceding block
it defines a chain of blocks.

Nodes in the peer-to-peer Bitcoin network run a process, known as mining,
to validate blocks of transactions, as well as to induce an order on transactions.
Validation entails finding random nonce such that the hash value of the block
falls below a certain threshold. Finding such a nonce can be considered to be
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t=85s

Block 0034 DF21

Nonce A317 3FDB

Pre 0042 E3D4
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t=511s

Block 007C 11BA
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t=1420s

Block 00D2 010E

Nonce 229A B770
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Txs tx22, tx24

Miner C

t=942s

Block 0009 FF5A

Nonce 5BA7 4436

Pre 007C 11BA

Txs tx21, tx22

Miner A

…

Fig. 1. Illustration of the Blockchain as hash-chain of blocks of transactions. For sim-
plicity each block contains only two transactions.

a stochastic process with an exponential distribution, and is called the proof-

of-work challenge. The threshold is regularly updated and agreed upon by the
entire network such that a new block will be found on average every 10 minutes.

Figure 1 illustrates a blockchain. It starts with a block found by Miner C
at t=85s, followed by a successor found by Miner A at t=511s. Due to the
distributed nature of the network two pools may find a block at about the same
time: in the example Miner B at t=939s, and Miner A at t=942s. If Miner A
would have received the block of Miner B before it found its own, it would have
abandoned its e↵ort and switched to the Block 001F 6A09. The example assumes
instead that Miner A found its own block first.

At this point, both blocks have been successfully mined as potential succes-
sors of Block 007C 11BA. Miners will continue with the block they receive first,
and due to the distributed nature of the network, di↵erent pools may continue
with mining di↵erent blocks, giving rise to so-called forks. It could take some
time to resolve a fork and during that time, di↵erent views of the blockchain will
exist. Blocks that fall outside of this longest chain are called orphaned blocks.

The race in Fig.1 is resolved as soon as the next block is found; here Block
001F 6A09. Once this happens the protocol stipulates that the blocks in the
longest chain become part of the authoritative blockchain. Only miners of blocks
in the longest chain will receive the rewards attached to mining.

2.2 Selfish Mining Process

The Bitcoin protocol [3,11] does not specify when miners must publish their
newly found blocks. The most basic strategy is to publish them immediately
after they are mined. This is referred to as the honest strategy. Eyal and Sirer
introduced a strategy for publishing newly found blocks called selfish mining [8].

Figure 2 illustrates one of the basic steps of selfish mining, intended to in-
crease the number of forks. In this example, Miner C finds a block at t=7s. This
block will be received by Miner A at t=8s, and by Miner B at t=11s1. All three

1 Note, that in general, the network does not have access to a shared global time.
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Fig. 2. Illustration of forks as races between di↵erent blockchains in a distributed net-
work. Pool A is selfish miner, and postpones publication of a block found at t=188s until
t=202s. This example omits for simplicity the hash values, nonces, and transactions.

miners will continue mining with this block. At t=99s Miner B finds a block and
publishes it. It will be received by Miner A and C at t=102s and t=104s, respec-
tively. Again all three miners will continue with this block. Up to this point, all
miners employ honest mining.

Assume that Miner A employs the selfish strategy. If it finds a block at
t=188s, it will not publish it immediately, but wait. If it receives a block by one
of the other miners – in the example a block of Miner C at t=201s – it will publish
its own block immediately, which intentionally creates a fork. The gamble is that
its own block arrives at the others miners before the block of Miner C. In the
example Miner B receives the block of Miner A before the block of Miner C,
and thus continues mining the block of Miner A. If Miner B then finds a new
block at time t=250s it will orphan the block Miner C found previously. Miner
C’s computational power from t=104s until t=252s – when it received the block
of Miner B – was e↵ectively wasted.

The question is if this can actually be beneficial for the selfish miner. In the
example, Miner A forwent a certain reward for the block it found at t=188s to
enter a race with pool C at t=202s. This looks superficially like a disadvantageous
strategy. However, Figure 2 describes only one step of selfish mining, namely the
step that intentionally introduces forks.

The following gives a full list of steps for the selfish miners. It assumes that
the selfish miner always mines at the end of its own private chain.
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1. The selfish miner finds a block.

(a) There is a fork, and both branches have length 1. In this case, the
selfish miner found a block to decide the race in its favour. The selfish
miner appends the block to its private chain and publishes it. The selfish
miner intends to orphan the single block in the public branch, and secure
the rewards of its own branch.

(b) Otherwise. The new block will be appended to its private chain, with-
out publishing it. This includes cases where the private chain is two or
more blocks ahead of the public chain.

2. The selfish miner receives a block. Provided that it actually increases
the height of the public chain, the selfish miner will proceed as follows:

(a) If there is no fork. This means the public and private chains are
identical. The received block is appended to the public chain, and the
public chain is adopted as the private chain. The other miner will receive
the rewards.

(b) There is one unpublished block in the private branch. The re-
ceived block is appended to the public chain. The unpublished block is
published. This is the scenario depicted in Figure 5.

(c) There are two unpublished blocks in the private branch. The
private chain is published. Since the public chain should still be one block
behind, this would secure all rewards in the private branch for the selfish
miner. After this, there is no fork.

(d) Otherwise. This is the case when the selfish miner is more than two
blocks in the lead. The selfish miner will publish the first unpublished
block. While the private chain is at least two blocks ahead, the public
branch and the portion of the private branch that has been published
have the same height. To other miners, a race is ongoing, even though
the selfish miner already has the blocks to decide the race in its favour.

To implement this strategy the selfish miner needs to maintain a record of
the head of the public chain, of the head of the private chain, the head of the
portion of the private chain that has been published, and the block where the
private and public chain fork. It should be noted that the public chain is the
local view that the selfish miner has of the blockchain. As discussed previously,
in general, di↵erent miners may have di↵erent views.

Eyal and Sirer have shown that a miner using selfish mining will gain more
rewards than would be proportional to their computational power, under the
assumption that the other miners use the honest strategy. This result depends
on the share ↵ of computational power the selfish miner has in the network and
the fraction � of miners that adopt the block of the selfish miner in case of a fork.
They discovered that selfish mining gives an increased reward if (1��)/(3�2�) <
↵ . This means, for example, that if a quarter of the other nodes adopt the block
of the selfish miner, i.e. � = 0.25, then the selfish mining strategy will pay o↵ if
the network share satisfies ↵ > 0.3.
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3 Uppaal Model

The Uppaal-SMC model consists of three templates: one for modelling the
behaviour of an honest miner, one for a selfish miner, and one for modelling the
propagation delay between miners. A fourth template is added to observe the
blockchain, but this node does not take part in the protocol. This section will
describe the important global variables and templates in detail.

Global variables and constants. The model includes two arrays of broadcast
channels, sendBlock[POOLS] and recvBlock[POOLS], for miners to send and re-
ceive blocks, where POOLS is the number of miners. A block is defined as a struct
of the height, a bounded integer BlockIndex, and array rewards[POOLS]. If a
miner with ID id mines a new block, it increments height and rewards[id].

Global variable syncBlock is used as an auxiliary to copy blocks between pro-
cesses. Important constants are integer PDELAY for the expected network delay,
and integer array POOL RATES[POOLS], which contains for each miner the rate at
which it finds blocks. The model uses as basic time unit 1 second; a rate of 1200
means that a miner finds on average one block every 1200 seconds.

Network links. The network link between any two miners is modelled as a one-
place bu↵er with delay. For any pair of IDs in and out, the model will include
one instance of the link template, depicted in Fig. 3. From the initial state it
will synchronize on channel sendBlock[in] with Pool in, and copy the received
block in global variable syncBlock to its local variable blockBuffer. It then
enters the location to the right. In this location it will synchronize on channel
recvBlock[out] with Miner out at a rate of 1 in PDELAY seconds. This transition
will copy the value of the bu↵er to syncBlock. If it receives another block from
Miner in, it will store that block in the bu↵er. Note, that the model will include
for any pair of miners one link, i.e. for a network with 10 miners, 100 links, each
with its own bu↵er.

Fig. 3. Parameters of the link template are the ID of sender in and receiver out.

Honest mining. Figure 4 shows the template for an honest miner with ID id. It
has a single location with two transitions. The first models successfully mining a
block. It calls method outputBlock which increments the height of the head of its
private chain and the rewards for itself. The other transition models receiving
a block which calls method updateBlock which will adopt the new block if it
improves on the height of the head of its private chain.
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Fig. 4. The honest mining template has
as parameter the id of the miner.

Fig. 5. The selfish mining template has
as parameter the id of the miner.

Selfish mining. The selfish miner keeps a record of four blocks: the head of the
private chain privateBlock, the head of the public chain publicBlock, the most
recently published block publishedBlock, and the block where the public and the
private chain fork, forkBlock. In addition, it uses a local Boolean publishBlock

which encodes whether a block should be published.
The top-most edge models mining a block (case 1 on Page 5). It calls method

mineBlock() at a rate of 1 in POOL RATE[id] seconds. It decide whether to publish
(part of) its private chain if it mines or receives a block.

The bottom-most edge models receiving a block (case 2 on Page 5). It
synchronizes on channel recvBlock[id], and calls updateBlock which decides
whether to append it to the private chain, or whether to publish a part of
the private chain. It sets Boolean publishBlock, depending on whether a block
should be published, or not.

The committed location in the mining template in Fig. 5 completes the
process. If mineBlock() or updateBlock set publishBlock to false, the self-
ish miner returns silently to the initial location. If it was set to true method
outputBlock will copy the block that is meant to be published to syncBlock, but
also to publishedBlock and publicBlock. The code for methods mineBlock()

and updateBlock is given in Listing 1.

System composition. The analysis in Section 4 uses a model with 10 miners and
100 links. It considers the 6 sets of network shares, as given in Table 1. If the
model includes a selfish miner it would be Miner A. Miner B has a share of
20% in all experiments to make the results comparable. A share of 20% would
correspond to finding a block once every 3000 seconds, assuming a network rate
of one block every 600 seconds. These rates are simplified but still largely similar
to the distribution of hash rates in the real world [4].

Uppaal-SMC simulated each scenario 1000 times for one day of simulation
time, i.e. for 86400 seconds. The simulation of one single scenario takes about
80 seconds on an Intel Core i5-5200 with 2 cores at 2.2GHz.
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1 void mineBlock () {//case 1

2 i f (privateBlock.height == publicBlock.height &&

3 privateBlock.height -forkBlock.height == 1) {//case 1.(a)

4 privateBlock.height ++;

5 privateBlock.rewards[id]++;

6 outputBuffer = privateBlock;

7 forkBlock = privateBlock;

8 publishBlock = true;

9 }

10 else { //case 1.(b)

11 privateBlock.height ++;

12 privateBlock.rewards[id]++;

13 publishBlock = false;

14 }

15 }

16
17 void updateBlock(Block newBlock) { //case 2

18 i f (newBlock.height >publicBlock.height) {

19 i f (newBlock.height >privateBlock.height){ //case 2.(a)

20 privateBlock = newBlock;

21 forkBlock = newBlock;

22 publishedBlock = newBlock;

23 publicBlock = newBlock;

24 publishBlock = false;

25 }

26 else

27 i f (newBlock.height == privateBlock.height) {//case 2.(b)

28 outputBuffer = privateBlock;

29 publishBlock = true;

30 }else //case 2.(c)

31 i f (newBlock.height == privateBlock.height -1) {

32 outputBuffer = privateBlock;

33 forkBlock = privateBlock;

34 publishBlock = true;

35 }

36 else { //case 2.(d)

37 publishedBlock.height ++;

38 publishedBlock.rewards[id]++;

39 outputBuffer = publishedBlock;

40 publishBlock = true;

41 }

42 }

43 }

Listing 1. Essential methods of the selfish miner.
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Scenario A B C D E F G H I J

#1 1% 20% 20% 15% 15% 10% 10% 5% 2% 2%

#2 10% 20% 20% 15% 15% 10% 5% 2% 2% 1%

#3 20% 20% 15% 15% 10% 10% 5% 2% 2% 1%

#4 30% 20% 15% 10% 10% 5% 5% 2% 2% 1%

#5 40% 20% 10% 10% 5% 5% 5% 2% 2% 1%

#6 50% 20% 10% 5% 5% 2% 2% 2% 2% 2%

Table 1. Network shares for di↵erent scenarios.

4 Analysis Results

This section will present for a 24h period the expected mining rewards and the
expected number of orphaned blocks. The former allows a comparison with re-
sults by Eyal and Sirer, the latter with data obtained from the publicly available
Bitcoin blockchain.

4.1 Mining Rewards

Fig. 6 depicts the height and rewards in di↵erent views of the blockchain. First
is the number of blocks mined over the 24 hours period. It is around 144 blocks,
as expected for a network that finds on average one block every 10 minutes.

Not all of these blocks will become part of the longest chain. Fig. 6 gives
the blockchain height and the reward of the selfish and first honest miner, reward
selfish and reward honest, respectively. Each of these three come in two versions
depending on whether it is part of the private chain of the selfish miner, or the
chain as known by the network.

These results show that as the network share of the selfish miner increases, it
decreases the height of the blockchain, and increases the rewards for the selfish
miner. For a miner with a 50% share the height is 89.4 and the reward 68.9, in
the private blockchain of the selfish miner. In the blockchain of the first honest
miner – Miner B in Table 1, who has a network share of 20% – the height is only
81.7, and the reward of the selfish miner is only 57.7. The di↵erence is partly
due to network delay, but mostly because the selfish miner has a bu↵er of 7.6
unpublished blocks in its private chain.

Fig. 7 translates these numbers to shares in the rewards. It also includes the
nominal share these miners should achieve; the selfish miner proportionally to its
network share, and the honest miner 20%. The results show that selfish mining
becomes profitable once the network share of the selfish miner exceeds 30%.

To compare these to Eyal and Sirer’s result, we need the probability that
other miners adopt the block of the selfish miner above a competing block. It
depends on two steps succeeding from the moment that the competing block
is found. First the selfish miner has to receive the competing block before the
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other miners, (2) the block sent by the selfish miner in response has to arrive
before the competing block. Given that in this model all delays use the same
memoryless distribution both steps succeed with a 50% chance, giving an overall
chance of 25%. Eyal and Sirer predict a threshold of 30% for this case, while in
Fig. 7 the share of the 30% selfish miner is 29.6%.

Fig. 8 shows how this evolves over a 24 hour period for a selfish miner with
a 50% network share. Initially, the selfish miner will appear to have a share
that is below its 50% network share, as it is secretly mining blocks. As the day
progresses its share will quickly exceed 80%, once it starts publishing blocks from
its private chain.

All results of this section are based on a propagation delay of 4 seconds. For
the results in this subsection, the propagation delay has little to no influence.
The next subsection will discuss di↵erent propagation delays in more detail.

4.2 Orphaned Blocks

An essential aspect of selfish mining is to create forks such that other miners
waste computational resources on blocks that are bound to be orphaned. To
compare the models with data from the actually Bitcoin blockchain, we combined
the data on orphaned blocks [2] with data on propagation times [1]. This gave
528 usable data points in the period from 18 March 2014 to 22 March 2017, i.e.
days with both data on orphaned blocks and propagation times. Fig. 9 shows
the distribution of days over di↵erent propagation times, rounded to the nearest
integer second. This leaves us with a reasonable data set for propagation delays
in the interval from 2 to 7 seconds.

Fig.10 shows the number of expected orphans if we have a network without
any selfish miner. The figure includes, for reference, the number of orphans from
the real data set, labelled real. The results show that as the delay increases, the
number of orphans increases as well. With the exception of the data point for 7
seconds, the real data falls into the range given by the simulation.

This picture changes once we introduce a selfish miner as depicted in Fig. 11.
Even a selfish miner with only a 1% network share leads to more orphans than for
any scenario with only honest miners or the real data. This comparison suggests
that there is no evidence in the real data of a prolonged presence of a selfish
miner with a significant network share.

5 Discussion and Conclusion

In [8], Eyal and Sirer provide a pseudocode algorithm for selfish mining. The
analysis uses a separate state transition model that captures the presence and
length of a fork. Based on this model they manually derived state probabilities
and expected rewards for each state. To validate the overall reward they use
Monte Carlo Simulation. Their combination of models assumes a single view of
the public chain where blocks are propagated instantly to provide estimates of
the rewards a selfish miner can expect in the long run.
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This paper presented a single unified modelling artefact. It also includes
propagation delays, a block model with rewards, and a distributed blockchain.
It does not separate the pseudo code from the transition probabilities, rewards,
and the analysis of the evolution of the network over time. This allowed an
automated analysis from the perspective of di↵erent participants, and compare
these to the theoretical results by Eyal and Sirer, as well as to real-world data.

The analysis confirms that selfish mining becomes profitable for networks
shares above 30%. The results of this paper show that the presence of a selfish
miner may go undetected for the first few hours, but would be obvious after that.
Future work would need to investigate how to identify a short-term attack on
a blockchain. For this type of analysis, it is especially important to distinguish
between the di↵erent views of the blockchain of di↵erent participants, as it is
done in this paper.

All Uppaal-SMC models, simulation data and more detailed results will be
available on https://wwwhome.ewi.utwente.nl/⇠fehnkera/Q19.
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Abstract. The Algorand blockchain is a secure and decentralized public
ledger based on pure proof of stake rather than proof of work. At its core
it is a novel consensus protocol with exactly one block certified in each
round: that is, the protocol guarantees that the blockchain does not
fork. In this paper, we report on our effort to model and formally verify
the Algorand consensus protocol in the Coq proof assistant. Similar to
previous consensus protocol verification efforts, we model the protocol
as a state transition system and reason over reachable global states.
However, in contrast to previous work, our model explicitly incorporates
timing issues (e.g., timeouts and network delays) and adversarial actions,
reflecting a more realistic environment faced by a public blockchain.
Thus far, we have proved asynchronous safety of the protocol: two differ-
ent blocks cannot be certified in the same round, even when the adver-
sary has complete control of message delivery in the network. We believe
that our model is sufficiently general and other relevant properties of the
protocol such as liveness can be proved for the same model.

Keywords: Algorand · Byzantine consensus · blockchain · Coq.

1 Introduction

The Algorand blockchain is a scalable and permissionless public ledger for se-
cure and decentralized digital currencies and transactions. To determine the next
block, it uses a novel consensus protocol [1,3] based on pure proof of stake. In
contrast to Bitcoin [6] and other blockchains based on proof of work, where safety
is achieved by making it computationally expensive to add blocks, Algorand’s
consensus protocol is highly efficient and does not require solving cryptographic
puzzles. Instead, it uses cryptographic self-selection, which allows each user to
individually determine whether it is selected into the committees responsible for
generating the next block. The self-selection is done randomly and independently
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by every participant, with probability proportional to its stake. Private commu-
nication channels are not needed, and the committees propagate their messages
in public. They reach Byzantine consensus on the next block and certify it, so
that all users learn what the next block is without any ambiguity. That is, rather
than waiting for a long time so as to be sure that a block will not disappear from
the longest chain like in Bitcoin, the Algorand blockchain does not fork, a cer-
tified block is immediately final and transactions contained in it can be relied
upon right away. The Algorand blockchain guarantees fast generation of blocks
as long as the underlying propagation network is not partitioned (i.e., as long as
messages are delivered in a timely fashion). The Algorand consensus protocol,
its core technology, and mathematical proofs of its safety and liveness properties
are described in [3,1,2].

The focus of this work is to formally model and verify the Algorand con-
sensus protocol using the Coq proof assistant. Automated formal verification
of desired properties adds another level of assurance about its correctness, and
developing a precise model to capture the protocol’s runtime environment and
the assumptions it depends on is interesting from a formal-methods perspective
as well. For example, [11] proves state machine safety and linearizability for the
Raft consensus protocol in a non-Byzantine setting, and [7] focuses on safety
properties of blockchains and, using a largest-chain-based fork-choice rule and
a clique network topology, proves eventual consistency for an abstract parame-
terized protocol. Similar to existing efforts, in this work we define a transition
system relation on global protocol states and reason inductively over traces of
states reachable via the relation from some initial state. As in previous efforts, we
abstract away details on cryptographic primitives, modeling them as functions
with the desired properties.

However, our goal and various aspects of the Algorand protocol presented
new challenges. First, our goal is to verify the protocol’s asynchronous safety
under Byzantine faults. Thus, we explicitly allow arbitrary adversarial actions,
such as corruption of users and replay of messages. Also, rather than relying
on a particular network topology, we explicitly model global time progression
and message delivery deadlines in the underlying propagation network. In par-
ticular, the Algorand protocol assumes that messages are delivered within given
deadlines when the network is not partitioned, and that messages may be arbi-
trarily delayed and their delivery is fully controlled by the adversary when the
network is partitioned. We have captured these aspects in our model. Moreover,
as mentioned above, the Algorand protocol uses cryptographic self-selection to
randomly select committees responsible for generating blocks. As mechanizing
probabilistic analysis is still an open field in formal verification, instead of try-
ing to mechanize randomized committee selection, we identify properties of the
committees that are used to verify the correctness of the protocol without ref-
erence to the protocol itself. We then express these properties as axioms in our
formal model. Pen-and-paper proofs that these properties hold (with overwhelm-
ing probability) can be found in [3,1].
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It is worth pointing out that our approach is based on reasoning about global
states and allows an adversary to arbitrarily coordinate actions among corrupted
users. This is different from [8], which formally verifies the PBFT protocol under
arbitrary local actions. Finally, [10] uses distributed separation logic for consen-
sus protocol verification in Coq with non-Byzantine failures. Using this approach
to verify protocols under Byzantine faults is an interesting avenue of future work.

Thus far, we have proved in Coq the asynchronous safety property of the
protocol: namely, two different blocks can never be both certified in the same
round, even when the adversary has complete control of message delivery in the
network. We believe that our model is sufficiently general and other relevant
properties of the protocol such as liveness can be proved for the same model.

2 The Algorand Consensus Protocol

In this section, we give a brief overview of the Algorand consensus protocol with
details salient to our formal model. More details can be found in [3,5,1].

All users participating in the protocol have unique identifiers (public keys).
The protocol proceeds in rounds and each user learns a certified block for each
round. Rounds are asynchronous: each user individually starts a new round
whenever it learns a certified block for its current round.

Each round consists of one or more periods, which are different attempts to
generate a certified block. Each period consists of several steps, in which users
propose blocks and then vote to certify a proposal. Specifically, each user waits a
fixed amount of time (determined by network parameters) to receive proposals,
and then votes to support the proposal with the best credential as described
below; these votes are called soft-votes. If it receives a quorum of soft-votes, it
then votes to certify the block; these votes are called cert-votes. A user considers
a block certified if it receives a quorum of cert-votes. If a user doesn’t receive a
quorum of cert-votes within a certain amount of time, it votes to begin a new
period; these votes are called next-votes. A next-vote may be for a proposal, if
the user received a quorum of soft-votes for it, or it may be open. A user begins
a new period when it receives a quorum of next-votes from the same step for the
same proposal or all being open; and repeats the next-vote logic otherwise.5

Committees. For scalability, not all users send their messages in every step.
Instead, a committee is randomly selected for each step via a technique called
cryptographic self-selection: each user independently determines whether it is
in the committee using a verifiable random function (VRF). Only users in the
committee send messages for that step, along with a credential generated by the
VRF to prove they are selected. Credentials are totally ordered, and the ones
accompanying the proposals are used to determine which proposal to support.

5 The actual logic for next-votes is more complex, but roughly speaking the next-votes
are classified as either for proposals or open.
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Network. Users communicate by propagating messages over the network. Mes-
sage delivery is asynchronous and may be out-of-order, but with upper bounds
on delivery times. However, messages may not be delivered within these bounds
if the network is partitioned.

Adversary. The adversary can corrupt any user and control and coordinate cor-
rupted users’ actions: for example, to resend old messages, send any message for
future steps of the adversary’s choice, and decide when and to whom the mes-
sages are sent by them. The adversary also controls when messages are delivered
between honest users within the bounds described above, and fully controls mes-
sage delivery when the network is partitioned. The adversary cannot, however,
control more than 1/3 of the total stake participating in the consensus protocol.

3 Model

Our model of the protocol in the Coq proof assistant is in the form of a transition
system, encoded as an inductive binary relation on global states. The transition
relation is parameterized on finite types of user identifiers (UserId) and values
(Value); the latter abstractly represents blocks and block hashes.

User and Global State. We represent both the user state and global state as Coq
records. For brevity, we omit a few components of the user state in this paper
and only show some key ones, such as the Boolean indicating whether a user is
corrupt, the local time, round, period, step, and blocks and cert-votes that have
been observed. The global state has the global time, user states and messages
via finite maps [4], and a Boolean indicating whether the network is partitioned.

Record UState := mkUState {
corrupt: bool; timer: R;

round: N; period: N; step: N;
blocks: N → seq Value;
certvotes: N → N → seq Vote;

(* ... omitted ... *)
}.

Record GState := mkGState {
network_partition: bool;

now: R;
users: {fmap UserId → UState};
msgs: {fmap UserId → {mset R * Msg}};

msg_history: {mset Msg};
}.

State Transition System. The transition relation on global states g and g’, writ-
ten g ! g’, is defined in the usual way via inductive rules. For example, the rule
for adversary message replay is as follows:

step_replay_msg : ∀ (pre:GState) uid (ustate_key : uid ∈ pre.(users)) msg,
¬ pre.(users).[ustate_key].(corrupt) → msg ∈ pre.(msg_history) →
pre ! replay_msg_result pre uid msg

Here, replay_msg_result is a function that builds a global state where msg is
broadcasted. We call a sequence of global states a trace if it is nonempty and
g ! g’ holds whenever g and g’ are adjacent in the sequence.
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Assumptions. To enable expressing relevant properties about our transition re-
lation, we add assumptions about committees and quorums. This includes a
function committee that determines self-selected committees, which we use to
express properties of overlapping user quorums, as in the following statement,
which says that for any two sets (quorums) of users of size at least tau, that are
both subsets of the committee for the given round-period-step triple, there is an
honest user for the step who belongs to both quorums:

Definition quorum_honest_overlap_statement (tau:N) :=

∀ (trace:seq GState) (r p s:N) (q1 q2:{fset UserId}),
q1 ⊆ committee r p s → #|q1| ≥ tau →
q2 ⊆ committee r p s → #|q2| ≥ tau →
∃ (honest_voter : UserId), honest_voter ∈ q1 ∧ honest_voter ∈ q2 ∧
honest_during_step (r,p,s) honest_voter trace.

Similarly, we capture that a block was certified in a period as follows:

Definition certified_in_period (trace:seq GState) (tau r p:N) (v:Value) :=

∃ (certvote_quorum:{fset UserId}),
certvote_quorum ⊆ committee r p 3 ∧ #|certvote_quorum| ≥ tau ∧
∀ (voter:UserId), voter ∈ certvote_quorum →
certvoted_in_path trace voter r p v.

This property is true for a trace if there exists a large-enough quorum of users
selected for cert-voting who actually sent their votes along that trace for the
given period (via certvoted_in_path, which we omit here). This is without loss of
generality since a corrupted user who did not send its cert-vote can be simulated
by a corrupted user who sent its vote but the message is received by nobody.

4 Asynchronous Safety

The analysis of the protocol in the computational model permits forking, albeit
with negligible probability [1,3]. In contrast, we specify and prove formally in the
symbolic model with idealized cryptographic primitives that at most one block is
certified in a round, even in the face of adversary control over message delivery
and corruption of users. We call this property asynchronous safety:

Theorem asynchronous_safety : ∀ (g0:GState) (trace:seq GState) (r:N),

state_before_round r g0 → is_trace g0 trace →
∀ (p1:N) (v1:Value), certified_in_period trace r p1 v1 →
∀ (p2:N) (v2:Value), certified_in_period trace r p2 v2 →
v1 = v2.

Here, the first precondition state_before_round r g0 states that no user has
taken any actions in round r in the initial global state g0, and the second pre-
condition is_trace g0 trace states that trace follows! and starts in g0.

Note that it is possible to end up with block certifications from multiple
periods of a round. Specifically, during a network partition, which allows the
adversary to delay messages, this can happen if cert-vote messages are delayed
enough for some users to advance past the period where the first certification was
produced. However, these multiple certifications will all be for the same block.
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Proof Outline. The proof of asynchronous safety proceeds by case-splitting on
whether the certifications are from the same period or different periods. For the
first and the easier case, p1 = p2, we use quorum hypotheses to establish that
there is an honest user that contributed a cert-vote to both certifications. Then,
we conclude by applying the lemma no_2_certvotes_in_p, which establishes that
an honest user cert-votes at most once in a period (proved by exhaustive analysis
of possible transitions by an honest node):

Lemma no_2_certvotes_in_p : ∀ (g0:GState) (trace:seq GState) uid (r p:N),
is_trace g0 trace →
∀ idx1 v1, certvoted_in_path_at idx1 trace uid r p v1 →
user_honest_at idx1 trace uid →

∀ idx2 v2, certvoted_in_path_at idx2 trace uid r p v2 →
user_honest_at idx2 trace uid → idx1 = idx2 ∧ v1 = v2.

The second case (p1 ≠ p2) is proved with the help of proving an invariant.
This invariant first holds in the period that produces the first certification —
say, p1 for v1— and keeps holding for all later periods of the same round. The
invariant is that no step of the period produces a quorum of open next-votes,
and any quorum of value next-votes must be for v1.

5 Conclusion
We developed a model in Coq of the Algorand consensus protocol and outlined
the specification and formal proof of its asynchronous safety. The model and the
proof open up many possibilities for further formal verification of the protocol,
most directly of liveness properties. In total, our Coq development [9] contains
around 2000 specification lines and 4000 lines of proof scripts.
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Abstract. Smart contracts are programs that run on a distributed led-
ger platform. They usually manage resources representing valuable as-
sets. Moreover, their source code is visible to potential attackers, they
are distributed, and bugs are hard to fix. Thus, they are susceptible to
attacks exploiting programming errors. Their vulnerability makes a rig-
orous formal analysis of the functional correctness of smart contracts
highly desirable.
In this short paper, we show that the architecture of smart contract
platforms offers a computation model for smart contracts that yields
itself naturally to deductive program verification. We discuss different
classes of correctness properties of distributed ledger applications, and
show that design-by-contract verification tools are suitable to prove these
properties. We present experiments where we apply the KeY verification
tool to smart contracts in the Hyperledger Fabric framework which are
implemented in Java and specified using the Java Modeling Language.

1 Introduction

Smart contracts are programs that work in conjunction with a distributed ledger.

They automatically manage resources on that ledger. Multiple distributed ledger

platforms supporting smart contracts have been developed, most prominently

the public Ethereum blockchain. Smart contracts manage resources representing

virtual or real-world assets. Their source code is visible to potential attackers.

Therefore, they are susceptible to attacks exploiting errors in the program source

code. Furthermore, smart contracts cannot be easily changed after deployment.

They need to be correct upon deployment, and formal methods should be used

for ensuring their correctness [3].

In this paper, we describe the computational model of smart contracts, which

makes them an ideal target for deductive program verification. We discuss dif-

ferent notions of smart contract correctness, and the implications for formal

verification.

We focus on the Hyperledger Fabric [4] architecture. Fabric is a framework

for the operation of private, permission-based distributed ledger networks. Smart

contracts in Fabric can currently be written in Go, Java, and Javascript. While

our concrete verification efforts target Fabric smart contracts written in Java,

much of the concepts can be generalized to other programming languages, and

also to other smart contract platforms.

The KeY system [1], which we used for experiments, is a deductive program

verification tool for verifying Java programs w.r.t. a formal specification. KeY fol-

lows the principle of design-by-contract, i.e., system properties are broken down

into method specifications called contracts that must be individually proven cor-

rect. Specifications for KeY are written in the Java Modeling Language [7], the



de-facto standard language for formal specification of Java programs. For ver-

ification, KeY uses a deductive component operating on a sequent calculus for

JavaDL, a program logic for Java.

In Section 2, we describe an abstract computational model for applications

in a distributed ledger architecture. In Section 3, we discuss different notions

and classes of smart contract correctness w.r.t. that model. Then, in Section 4,

we describe how properties from these classes can be verified in the KeY tool.

Finally, we draw some conclusions and discuss future work in Section 5.

2 Distributed Ledger Infrastructure and the
Computational Model

Smart contract platforms are complex systems. Their functionality is spread

across several layers and components. Some components are by necessity part of

every smart contract platform, other components are unique to certain types of

smart contract systems.

The correct behavior of a smart contract depends on all components of

the distributed ledger architecture. This includes: the implementation of the

blockchain data structure, which ensures that the shared history cannot be

changed; the consensus and ordering algorithms for creating a single view of

the system state; the cryptography modules for chain integrity and the public

key infrastructure; and the network layer, which ensures correct distribution of

transaction requests and new blocks.

If all these components work correctly, they provide an abstract computa-

tional model for the execution of smart contract applications in a distributed

ledger system. This computational model can be described as follows: A dis-

tributed ledger platform behaves like a (non-distributed) single-core machine

which takes requests (in the form of function calls) from clients. The execution

of a request (a transaction) is atomic and sequential. The machine’s storage is

a key-value database in which serialized objects are stored at unique addresses.

The storage can only be modified through client requests. The overall state of

the storage is determined entirely by the order in which requests are taken. No

assumptions can be made about the relationship between the order of requests

made by the clients and the actual order of execution. However, it can be as-

sumed that every request is eventually executed. All requests are recorded, even

if they do not modify the state or are malformed.

3 Correctness of Smart Contracts

In the previous section, we have described the abstraction provided by smart con-

tract architectures: It behaves like a single-core machine operating on a database

storage and taking requests from clients. In this section, we discuss how this ab-

straction is useful for applying program verification techniques and tools. We

give an overview of different classes of smart contract correctness properties and

characterize the requirements and challenges for formal analysis that each class

entails. The properties are roughly ordered by the effort required to prove them.

Existing approaches to verification of smart contracts are given as examples for

each class.



3.1 Generic Properties

Generic properties are independent of the concrete smart contract application

and its functionality, i.e., there is not need to write property specifications for

individual contracts. Typical examples of generic properties are termination for

all inputs, absence of exceptions (such as null-pointer dereference), and absence

of type errors.

Program properties such as termination are undecidable in general, and

proofs may be non-trivial and require heavy-weight verification tools. Never-

theless, many generic properties can be validated by syntactical methods like

type checking or simple static analysis. They are less precise than program ver-

ification and produce false alarms in case of doubt, but are still very useful in

practice. Especially in the context of Ethereum, there is a wide variety of static

analysis tools, e.g. [8,9], that can show the absence of known anti-patterns or vul-

nerabilities, like the notorious reentrance vulnerability, or inaccessible funds. For

Hyperledger Fabric, there exists a tool which statically checks a smart contract

for anti-patterns like non-determinism or local state.
1

3.2 Specific Correctness Properties of Single Transactions

Correctness of a smart contract applications cannot be captured by generic prop-

erties alone: There has to be some formal specification which expresses the ex-

pected resp. required behavior of a program. Smart contract functions, which

are atomic and deterministic in our computational model, are the basic modules

of smart contracts (much like methods are basic components of programs), and

therefore also the basic targets for correctness verification. The specification of

a function consists of a precondition, which states what conditions the caller of

the function has to satisfy, and a postcondition expressing what conditions are

guaranteed to hold after the transaction (i.e., the function execution).

In case of smart contracts, the precondition should generally be empty be-

cause no assumptions about the state of the ledger should be necessary for

correctness; furthermore, the values of the call parameters could be chosen by

a malicious agent, and correctness properties need to hold for all possible input

values.

Examples of specific properties of a single transaction include functional cor-

rectness statements (e.g., “the specified amount is deducted from the account

if sufficient funds are available, otherwise the account remains unchanged”) and

statements about which locations on the ledger a transaction is allowed to mod-

ify.

An approach to verification of single transaction correctness using the Why3

verification platform has been proposed [6]; our own approach using the KeY

tool is discussed in Section 4.

3.3 Correctness of Distributed Ledger Applications

While transactions are equivalent to individual program functions, a distributed
ledger application (DLA) is equivalent to a reactive program whose functions

can be called by external agents. Informally, a DLA is a part of a smart contract

network concerned with one specific task, like running an auction or providing

a bank service. More precisely, a DLA is the set of all transactions that can

1 https://chaincode.chainsecurity.com/

https://chaincode.chainsecurity.com/


affect a given set of storage locations (including transactions that cannot access

a storage location but are used in the calculation of the values being written).

While correctness of the component transactions is a necessary pre-requisite

for the correctness of the DLA, there are properties which inherently are proper-

ties of transaction traces. They cannot be readily expressed as correctness prop-

erties of single transactions. To break them down into a set of single-transaction

properties is a non-trivial process. Examples for this class of properties include

invariants (e.g., “the overall amount of funds stays the same” for a banking ap-

plication) and liveness properties giving the guarantee that some condition will

eventually be fulfilled. Complex properties of this kind typically are expressed

in temporal logic.

4 Verification of Smart Contracts Using the KeY Tool

In this section, we discuss verification of smart contract correctness using the

KeY tool. The abstract computational model devised in Section 2 is an excellent

fit for KeY because, in this setting, a distributed ledger application can be viewed

as the equivalent of a Java program where single transactions correspond to Java

methods. Thus, the KeY tool, which is designed for verifying Java programs,

can be utilized for DLA verification, requiring only minor adaptations. These

adaptations mostly concern the nature of the storage, since KeY operates on a

heap with object references, while the distributed ledger application’s storage

is a database of serialized objects. Furthermore, due to the unknown order of

execution and the fact that different agents operate within the shared program,

there cannot be any assumptions as to the contents of the storage or order of

transaction execution.

As an example, we consider a Hyperledger Fabric smart contract that im-

plements functionality for simple auctions. It consists of three public methods,

which allow clients to (1) start auctions for items they want to auction off,

(2) bid for existing auctions, and (3) close an auction (an action that requires

administrative credentials):

void createAuction(List<Item> items, int minBid, int endTime) { ... }
void bid(int auctionID, int bid) { ... }
void closeAuction(int AuctionID) { ... }

4.1 Generic Properties

The KeY tool can be used to verify any generic property. As a heavy-weight

verification tool, it is particularly useful for properties that cannot be handled

by light-weight tools resp. that require KeY’s higher precision to avoid too many

false alarms. Examples are program termination and the absence of exceptional

behavior (the Java Modeling Language keyword normal_behavior can be used

to specify that a method terminates without exception).

While constructing proofs for such properties is a non-trivial task in general,

typical smart contracts are compact and lack complex control flows. In such

settings, proofs of termination and absence of exceptions can be expected to be

found automatically by KeY, requiring none or minimal auxiliary specifications.

4.2 Chaincode Transaction Correctness

Verification of Hyperledger Fabric chaincode functions, if written in Java, is

possible in KeY. The difference between a normal Java program and our com-



putational model is in the storage: While Java programs operate on a heap, a

Fabric Smart Contract operates on an (abstracted) key-value database storing

serialized objects. In our experiments, this difference was addressed by an exten-

sion of the KeY tool, including an axiomatisation of the read/write interface of

the Fabric ledger, a model of the ledger on a logical level, and the introduction

of abstract data types for each type of object that is managed by the smart

contract [5].

In the auction example, one might want to specify the closeAuction()
method as follows:

/*@ ensures read(ID) != null ==> read(ID).closed;
@ ensures (\forall Item i \in read(ID).items;
@ i.owner_id == read(ID).highestBidderID);
@ modifies read(ID);
@*/

void closeAuction(int ID) { ... }

This JML specification is somewhat simplified for readability; the read func-

tion is an abstraction for accessing the ledger, i.e., reading and deserializing the

object at the given location. The specification states that, if the auction object

at ID is not null, then after execution of the closeAuction() method the closed
flag must be correctly set; furthermore all items in the auction must belong to the

highest bidder (as indicated by the owner_id attribute). The modifies clause

states that only the object at the location specified by ID may be changed by the

transaction, ensuring that no unexpected side effects are possible. This method

contract can be loaded and proven using our smart-contract version of KeY; the

logical rules necessary for handling the data types stored on the ledger (in this

case, auctions, items, and participants) are created automatically. The proof re-

quires some user interaction, since the new rules have not yet been included in

the automation mechanism of the prover.

There exists a comparable approach for using KeY to verify Ethereum smart

contracts [2].

4.3 Correctness of Distributed Ledger Applications

More complex properties can be reasoned about in KeY using class invariants,

two-state invariants, and counters, thereby reducing complex properties of trans-

action traces (including temporal logic properties) to KeY’s method-modular

approach. For example, the specification of the auction application could state

that, as long an the auction is open, the items that are offered still belong to

the auctioneer:

//@ invariant (\forall Auction a; !a.closed ==>
(\forall item i \in a.items;

i.owner_id == a.auctioneer_id));

If every bidder has to deposit the funds for their bid in the auction, the

specification could state that as long as the auction remains open, the sum of

the funds in the auction remains the same or increases, but never decreases. This

can be expressed with a history constraint:

//@ constraint (\forall Auction a; !a.closed ==>
\old(a.funds) <= a.funds);

Though this constraint can easily be expressed in the Java Modeling Language,

proving in KeY that a smart contract conforms to this specification is currently



infeasible due to the large amount of user interactions that is necessary to close

the proof, and due to the inefficiencies of our current approach regarding the

handling of reading from and writing to the ledger.

5 Conclusion and Future Work

We have outlined the setting in which deductive program verification of dis-

tributed ledger applications takes place and shown that the KeY verification

tool is suitable to prove different classes of correctness properties which are in-

teresting in smart contract platforms.

The extensions to KeY which enable verification of Hyperledger Fabric smart

contracts are still in a prototypical state. Further improvements are necessary

to improve scalability and enable proofs of more complex properties.
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Abstract. As smart contracts are growing in size and complexity, it
becomes harder and harder to ensure their correctness and security. Due
to the lack of isolation mechanisms a single mistake or vulnerability in the
code can bring the whole system down, and due to this smart contract
upgrades can be especially dangerous. Traditional ways to ensure the
security of a smart contract, including DSLs, auditing and static analysis,
are used before the code is deployed to the blockchain, and thus o↵er
no protection after the deployment. After each upgrade the whole code
need to be verified again, which is a di�cult and time-consuming process
that is prone to errors. To address these issues a security protocol and
framework for smart contracts called Cap9 was developed. It provides
developers the ability to perform upgrades in a secure and robust manner,
and improves isolation and transparency through the use of a low level
capability-based security model. We have used Isabelle/HOL to develop
a formal specification of the Cap9 framework and prove its consistency.
The paper presents a refinement-based approach that we used to create
the specification, as well as discussion of some encountered di�culties
during this process.

Keywords: formal specification · smart contracts · isabelle · security.

1 Introduction

Ethereum [6] is a global blockchain platform for decentralised applications with a
built-in Turing-complete programming language. This language is used to create
smart contracts — automated general-purpose programs that have access to the
state of the blockchain, can store persistent data and exchange transactions with
other contracts and users. Such contracts have a number of use-cases in di↵erent
areas: finance, insurance, intellectual property, internet of things, voting, and
others.

However, creating a reliable and secure smart contract can be extremely
challenging. Ethereum guarantees that the code of a smart contract would be
executed precisely as it is written through the use of a consensus protocol, which
resolves potential conflicts between the nodes in the blockchain network. It pre-
vents malicious nodes from disrupting and changing the execution process, but



2 Mandrykin et al.

do not protect from the flaws and mistakes in the code itself. And due to the
lack of any other control on the execution of the code any uncaught mistake can
potentially compromise not only the contract itself, but also other contracts that
are interacting with it and expect a certain behavior from it.

Such flaws can be turned into vulnerabilities and cause a great harm, and
there are many examples of such vulnerabilities and attacks that exploit them [1].
Developers can ensure the security of a contract using auditing, various static
analysis tools [15, 11], domain-specific languages [5, 7], or formal verification [2].
These are excellent tools and methods that can significantly improve the quality
of the code. But they are not so e↵ective during the upgrades, which is a common
process for almost every su�ciently sophisticated smart contract. Upgrades are
necessary because it is the only way to fix a bug that was missed during the
verification process. However, they can also introduce their own bugs, so after
each upgrade the code needs to be verified again, which may cost a lot of time
and e↵ort.

These issues are addressed by the Cap9 framework [4]. It provides means
to isolate contracts from each other and restrict them from doing dangerous
state-changing actions unsupervised, thus greatly reducing risks of upgrades
and consequences of uncaught mistakes. Cap9 achieves this by using a low level
capability-based security model, which allows to explicitly define what can or can
not be done by any particular contract. Once defined, such capabilities, or per-
missions, are visible to anyone and can be easily understood and independently
checked, thus increasing transparency of the system.

In order to be trusted, the Cap9 framework itself needs to be formally veri-
fied. The specification of the framework must be formalised and proved, in order
to show that it is consistent and satisfies the stated properties. Then the im-
plementation, which is a smart contract itself, must be proved to be compliant
with its specification. In this paper we are focusing only on the first part — on
developing and proving a formal specification of the Cap9 framework using the
Isabelle/HOL theorem prover [17] The paper presents a refinement-based ap-
proach that we used to create the specification, and evaluates the chosen formal
method by describing encountered di�culties during this process.

The following section outlines the features and capabilities of the Cap9 frame-
work. Section 3 presents the Isabelle/HOL specification, as well as the di�culties
we have encountered and the refinement process we used to develop it. Related
work is reviewed in Section 4. The last section concludes the paper and considers
future work.

2 Cap9 Framework

The Cap9 framework achieves isolation by interposing itself between the smart
contracts that are running on top of it and potentially dangerous actions that
they can perform, including calling other smart contracts, writing to the storage
and creating new contracts. Such actions can be performed only using special
“System Call” interface provided by the framework. Via this interface it has
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complete control over what contracts can and cannot do. Each time a system
call is executed Cap9 conducts various runtime security checks to ensure that
a calling contract indeed has necessary rights to perform a requested action. It
works similar to how operating system kernels manage accesses of programs to
the hardware (like memory and CPU) and protect programs from unauthorised
accesses to each other.

In order to ensure that a contract correctly uses the system call interface and
does not perform any actions bypassing the framework its source code needs
to be verified. Cap9 does it on-chain and it checks that the source code does
not contain any forbidden instructions, like ones allowing to make state changes,
make an external call, or self destruct. Once the code is verified the corresponding
contract can be registered in the framework as a procedure and thus access its
features.

There are system calls available to securely perform the following actions:

– Register new procedure in the framework;
– Delete or registered procedure;
– Internally call a registered procedure;
– Write data to the storage;
– Append log record with given topics;
– Externally call another Ethereum address and/or send Ether;
– Mark a procedure as an entry procedure — a one that would handle all the

incoming external calls to this contract system or organisation.

As a typical smart contract, Cap9 has access to the storage — a persistent
256 x 256 bits key-value store. A small part of it is restricted and can be used
only by the framework itself. It has a strict format and is used to store the
list of registered procedures, as well as procedure data, addresses of entry and
current procedures and the Ethereum address of the deployed framework itself.
This part is called the kernel storage. The rest of the storage is open to use by
any registered procedure either directly (in case of read) or through a dedicated
system call (in case of write).

Traditional kernels have a lot of abstraction layers between programs and
hardware. Unlike them, Cap9 exposes all the underlying Ethereum mechanisms
directly to the contracts, with only a thin permission layer between them. This
layer implements a capability-based access control, according to which in order
to execute a system call a procedure must posses a capability with an explicit per-
mission. Such capability has a strict format, which is di↵erent for each available
type of system calls.

Capabilities can be used to restrict components of a smart contract system
and thus to implement the principle of least privilege. They can even be used as
base primitives to create a custom high-level security policy model to better fit
a particular use case. Such policy would be simple to analyze and understand,
but able to limit possible damage from bugs in the code or various malicious
actions (including replacing the code of a contract via the upgrade mechanism).

Cap9 is compatible with both EVM and Ewasm applications.
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3 Formal Specification

The main goal of formalizing the interface specification of the Cap9 security
framework was to ensure internal consistency and completeness of its description
as well as to provide a reliable reference for all of its implementations. The
reference should eventually serve as an intermediate between the users and the
developers of any Cap9 implementation ensuring full compatibility of all further
system uses and implementations. The source specification itself is formulated
as a detailed textual description of the system interface [19], which is language-
agnostic and relies on the binary interfaces of the underlying virtual machine.
Thus all the data mentioned in the specification is given an explicit concrete
bit-level representation, which is intended to be shared by all system users and
implementations.

3.1 Consolidation of low-level representation with high-level
semantics

One of the immediately arising challenges of formally verifying a system with
very explicit specifications on concrete data representation is e�ciently establish-
ing a correspondence between this representation and the corresponding intended
semantics, which is used for actual reasoning about the system and therefore for
the actual proof.

A particular example in our case is the representation and the semantics of
capability subsets. Each capability of every procedure in the system logically
corresponds to a set of admissible values for some parameter configuration, such
as kernel storage address (for writing to the storage), Ethereum address and
amount of gas for external procedure call, log message with several special topic
fields etc. Each such set is composed of a (not necessarily disjoint) union of a
number of subsets, which in their turn directly correspond to some fixed rep-
resentations. A subset of writable addresses, for example, is represented as a
pair of the starting address and the length of a continuous range of admissible
addresses. Thus the entire write capability of any kernel procedure is a union of
such continuous address ranges.

But it’s important to note that while on one hand we clearly need to state the
set semantics of the write capability (as a generally arbitrary set of addresses),
in particular this is especially convenient semantics to be used for proofs of
generic capability properties, such as transitivity; on the other hand, however,
we have a clearly indicated format of the corresponding capability representation
stated in the system specification, which is not a set, but a range of storage cells
holding the bit-wise representations of the starting addresses and lengths of the
corresponding ranges.

If we stick with the specified representation, we will be unable to e�ciently
use many powerful automated reasoning tools provided with Isabelle/HOL, such
as the classical reasoner and the simplifier readily pre-configured for the set op-
erations. However, if we just use the set interpretation, the specification on the
concrete representation will be notoriously hard to express. Hence we likely need
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several di↵erent formalizations of a notion of capability on several levels of ab-
straction. We actually used three representations: the concrete bit-wise represen-
tation, the more abstract representation with the length of the range expressed
as natural number (and with an additional invariant), and finally the set rep-
resentation. By using separate representations we ended up with small simple
proofs for both generic capability properties and their concrete representations.

3.2 Correspondence relation vs. representation function

Eventually we decided to employ the same refinement approach with several
formalizations for the entire specification, thus obtaining two representations
of the whole system: the structured high-level representation with additional
type invariants and the low-level representation as the mapping from 32-byte
addresses to 32-byte values, i.e. the state of the kernel storage. However, using
separate representations raises a problem of e�ciently establishing the corre-
spondence between them. Initially we tried a more general approach based on
the correspondence relation. Yet to properly transfer properties of the high-level
representation to the low-level one, the relation should enjoy at least two prop-
erties: injectivity and non-empty image of every singleton:

lemma rel injective: "[[s `̀ �1; s `̀ �2]] =) �1 = �2"

lemma non empty singleton: "9 s. s `̀ �"

Here `̀ stands for the correspondence relation, � — for the high-level rep-
resentation and s — for the concrete one. We noticed that proving the second
lemma essentially requires defining a function mapping an abstract representa-
tion to the corresponding concrete one. Thus this approach results in significant
redundancy in a sense that both the function defined for the sake of proving the
second lemma and the correspondence relation itself repeat essentially the same
constraints on the low-level representation. For a very simple example consider:

definition models :: "(word32 ) word32 ) ) kernel ) bool" (" `̀ ") where
"s `̀ � ⌘ unat (s (addr Nprocs)) = nprocs �"

definition "witness � a ⌘ case addr�1 a of Nprocs ) of nat (nprocs �)"

Here not only we need to repeatedly state the relationship between the value
of kernel storage at address addr Nprocs and the number of procedures regis-
tered in the system (nprocs �) twice, but we also potentially have to define the
address encoding and decoding functions (addr and addr�1) separately and to
prove the lemma about their correspondence. We discuss our approach to ad-
dress encoding in the following section and here only emphasize the redundancy
arising from the approach based on the correspondence relation.

At the same time, the major reason for introducing the correspondence re-
lation instead of using a function is an inherent ambiguity of the encoding of
the high-level representation into the low-level one. However, after carefully re-
visiting the initial specification of the system we noticed that the ambiguity of
representation in our system actually arises only from the unused storage mem-
ory rather than from the presence of any truly distinct ways of representing the
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same state. But this particular kind of ambiguity can be e�ciently expressed
using a representation function with an additional parameter — i. e. the state
of the unused memory.

Let’s illustrate our formalization approach that is based on representation
functions on the example of Procedure Call capability. The specification of this
capability is as follows:

The capability format for the Call Procedure system call defines a range of
procedure keys what the capability allows one to call. This is defined as a base
procedure key b and a prefix s. Given this capability, a procedure may call any
procedure where the first s bits of the key of that procedure are the same as the
first s bits of procedure key b.

Procedure Key (24 bytes)Pre x Size (1 byte)

0x00:

Here the unused space is left blank. Beforehand we strive to make the actual
formulation of the arising injectivity lemma as simple as possible by eliminating
premises of the lemma and turning them into type invariants. So we introduce
the following definitions:

typedef prefix size = "{n :: nat . n  LENGTH (key)}"
definition "prefix size rep s ⌘ of nat bsc :: byte" for s :: prefix size
type synonym prefixed capability = "prefix size ⇥ key"
definition — set interpretation of single write capability

"set of pref cap sk ⌘ let (s, k) = sk in
{k 0 :: key . take bsc (to bl k 0) = take bsc (to bl k)}"

for sk :: prefixed capability
adhoc overloading rep prefix size rep — prefix size rep is now denoted as b·c
definition — low-level (storage) representation of single write capability
"pref cap rep sk r ⌘ let (s, k) = sk in
bsc 1⌃ k OR r � {LENGTH (key)..<LENGTH (word32 ) � LENGTH (byte)}"

for sk :: prefixed capability

Here the parameter r represents some arbitrary memory state being over-
written by the representation of the capability. The binary representation of r is
truncated (by bit-wise conjunction with a mask) to fill the range of unused bits
before combining it with the zero-padded representation. The value of unused
memory r is propagated across all representation functions in a composable way,
so all low-level representations are formalized with plain single-valued functions.
This approach not only allows simple transfer of all high-level properties to the
low-level representation, but also avoids the need in explicit definitions of the
corresponding inverse (decoding) functions. A single definition is enough to reuse
the encoding functions (along with their injectivity proofs) for the specifications
of operations that require decoding of representations:

definition
"maybe inv f y ⌘ if y 2 range f then Some (the inv f y) else None"
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Since we don’t verify the actual implementation of the decoding functions,
this implicit definition is su�cient and greatly simplifies proofs.

3.3 Disjointness of addresses

Another problem arising from detailed low-level specifications of memory layout,
such as the layout of the kernel storage, is the problem of reasoning about non-
intersecting memory areas. While in the context of program verification there are
such well-known approaches to reasoning about disjoint memory footprints as
separation logic [18] and dynamic frames [12], in our context of formalizing the
specification (rather than the implementation) of the system these approaches
turned out to be both too abstract and too heavyweight. Too abstract since in
separation logic the particular concrete layout of the memory footprints is left
entirely abstract, while we needed to formalize the actual mapping of the data
structures to the mostly fixed address ranges they should occupy. Too heavy-
weight since to represent the encoding of the whole kernel state with either
separation logic or dynamic frames we would need to use some additional means
to set up the embedding of the corresponding reasoning mechanism into plain
HOL, while not having any real need in verifying code involving updates to the
system state. In our approach we simply treated kernel addresses as semantic
entities with some ascribed low-level representations (concrete values). Then fol-
lowing our general use of representation functions we defined the representation
of addresses and its inverse. The inverse than can be directly used to specify the
storage layout and prove the injectivity of the overall encoding with minimal
e↵ort. Here’s an illustrative example:

typedef o↵set = "{ n :: nat . n < 2 ˆ LENGTH (byte)}"
morphisms o↵ rep o↵

datatype address = Nprocs | Curr proc | Proc heap o↵set
definition "addr rep a ⌘ case a of

Nprocs ) 0x0000
| Curr proc ) 0x0100
| Proc heap o↵s ) 0x02 OR of nat (o↵ rep o↵s)"

definition "addr inv ⌘ maybe inv addr rep"
definition "encode � r a ⌘ case addr inv a of

Some a 0 ) case a 0 of
Nprocs ) of nat (nprocs �) OR (r a) � ...

| Curr proc ) of nat (curr proc �) OR (r a) � ...
| Proc heap o↵s ) encode heap � o↵s r

| None ) r a"

Also note the filler of the unused memory r being passed over in a top-down
manner starting from the outermost representation function.

Now we move from the problems arising from the detailed low-level speci-
fication of our target system to some more general issues of formalization and
formal proofs within the Isabelle/HOL framework that we encountered during
verification.
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3.4 General Isabelle/HOL limitations

Bit-vector concatenation An example of a minor, though noticeable limita-
tions of the simple Hindley-Milner type system employed within the Isabelle/HOL
framework is its inability to express type-level sum (and other simple arithmetic
operations), while still being able to express type-level numbers. For an illus-
tration of the issue consider the following definition of bit-vector concatenation
function from the HOL-Word library that comprises an extensive Isabelle/HOL
formalization of fixed-size bit-vectors, corresponding operations and their various
properties:

definition word cat :: "
0a::len0 word ) 0b::len0 word ) 0c::len0 word" ...

The annotation of the form 0a::len0 constrains the type parameter ’a to
belong to the len0 type class, which has the corresponding associated operation
LENGTH(’a) returning a natural number. Thus we essentially gen type-level
numbers that can be injected into terms as natural numbers with the use of the
LENGTH operation. However, as we can see in the definition of word cat, the
result of this function has the type ’c::len0 that is generally unrelated to the
parameter types ’a and ’b. This has two basically unavoidable, but undesirable
consequences:

– Since there is no way of further constraining the resulting parameter type
’c::len0, the function word cat is forced to be partial. Generally, there is
nothing particularly special about handling of partial functions within the
Isabelle/HOL framework, but their presence has at least one undesirable
consequence for formalization of system interface specifications, which we
discuss further in this section.

– Since the resulting type parameter ’c::len0 cannot be automatically inferred
from the arguments of word cat, if has to be explicitly specified. Normally,
this doesn’t lead to a significant type annotation burden since the parameter
can be propagated by type inference from some term with a known type. But
in case of consecutive (nested or chained) word cat applications, the inner
type parameters become essentially inaccessible for further type propagation
or inference and have to be specified explicitly e.g.

definition "entry proc addr ⌘ word cat
(word cat
(word cat (k prefix :: 32 word) (0x04 :: byte) :: 40 word)
(0 :: 192 word) :: 232 word)

(0x000000 :: 24 word) :: 256 word"

This can be slightly mitigated by introducing some ad-hoc monomorphic
notation for hexidecimal numbers (e.g. syntactically reconstructing the type
annotation from the length of the input hexidecimal representation), but this
approach still quickly becomes unwieldy in practice, especially in the con-
text of the great available variety of Ethereum bit-vector types with various
lengths.
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First we propose a relatively simple remedy for the second problem. We actually
used our own definition of a concatenation function with a fixed result type (the
largest needed length of 256 bits) and parameter types of arbitrary length that
is ignored. Instead we provided the necessary length of the second argument as
an additional explicit parameter. Thus the whole issue of dealing with lengths
was shifted from the type to the term level eliminating the need in any type-level
representations altogether. This resulted in more approachable definitions e.g.

definition "entry proc addr ⌘
(k prefix :: 32 word) on224 0x04 on216 (0 :: 192 word) on24 0x000000"

Here ·on·· denotes our concatenation function. In our opinion in the lack of de-
pendent types [3] or other expressive capabilities of the type system the use of
logical (term-level) constraints may be often preferable to some limited meta-
logical (e.g. type-level) extensions such as the use of type classes.

Now we move to the second problem.

Partiality The presence of partial functions in the specification of an interface of
the system has a subtle undesirable property — unpredictability stemming from
the undefined results returned by the partial functions. Consider the following
very typical and general preservation lemma:

lemma preservation: "I s =) I (op s a)"

Here I is an invariant of the system and op is an operation on the system
with an argument a. Let’s imagine an example instance of this kind of lemma:
Let s be a natural number, I s be the predicate s > 0 and op correspond to
the operation s  s + s div a. Looking at the general statement of the lemma,
a rather natural interpretation of such a preservation property would be that
any application of the operation op to the system is “safe” as it preserves its
invariant. However in our particular example it’s obvious that even though the
application of op with a = 0 provably preserves the invariant, it actually has en-
tirely unpredictable consequences for the system. So specifications of operations
on the system involving partial functions may considerably mislead the reader
of the specification while remaining perfectly correct form the purely logical per-
spective. If the formal specification is to serve as a formal documentation on the
system this fact may significantly undermine the value of applying the formal
methodology for that purpose. Fortunately, there are various ways to strengthen
the specification to exclude such unintuitive definitions. For our specification we
additionally proved the following injectivity-like lemmas for every operation:

lemma injectivity like: "op s a = op s b =) a ⇠ b"

Here ⇠ denotes some notion of equivalence for arguments of the operation in a
sense that equivalent arguments produce equivalent results. In case the operation
op actually involves some non-determinism, the formulation of the lemma should
be adjusted accordingly, thus making this non-determinism explicitly exposed for
the reader. The proof of such a lemma is enough to exclude any hidden non-
determinism, since for any non-trivial equivalence relation ⇠ (9a0. a0 6⇠ a) if the
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op has non-deterministic result on a, op a may be arbitrarily chosen to be equal
to op a0 and the relation a ⇠ a0 then cannot be established.

Dependent products Another limitation arising from the lack of dependent
types or other expressive type system features is inability to directly express
dependent products i.e. types of the form

Q
x::0a f(x), where f is a type-level

function on the value x of some type 0a. A typical example of a situation,
where this seems very natural is a list of pairs of the form “capability type
⇥ capability representation” or triples of the form “capability type ⇥ capabil-
ity encoding function ⇥ capability decoding function”. Here the right members
of the tuples should have appropriate types depending on the corresponding
type of the capability e.g. if the value of the first member is “Write”, than
the type of the second member should be “write capability” or “write capability
) byte list”. Such types cannot be directly expressed within the Isabelle/HOL
framework, although many modern functional programming languages are capa-
ble of that due to the availability of generalized abstract data types (GADTs).
We used type invariants in such cases:

definition "wf cap (tc :: capability type ⇥ capability) ⌘ case tc of
(Delete, Delete cap ) ) True

| (Write, Write cap ) ) True
| ) False"

typedef capability pair = "Collect wf cap"

Finally it’s important to note an essential benefit of a logical framework
with a very limited type system, which is its amenability to automation using
existing readily available tools such as saturation-based provers (E-priver, Vam-
pire, Metis) and SMT solvers (Z3, CVC4). In our experience their use within
the Isabelle framework lead to great advantages ultimately outweighing all the
limitations mentioned above.

4 Related Work

There are many examples of using formal methods for developing specifications
of various systems. Isabelle/HOL was used to prove functional correctness of the
seL4 operating system microkernel [13], providing a proof chain from the high-
level abstract specification of the kernel, down to the executable machine code.
The B-method was applied to create formal models of various safety-critical
railway systems [14]. A dedicated specification language for defining the high-
level abstract models was introduced in [20].

On the other hand, verification of smart contracts is almost exclusively con-
centrated on the contract implementation, omitting the separate formalisation
of their specification. It is a valid approach if the specification is simple enough,
which is not the case for the Cap9 framework.

There are several examples of formalisation of the Ethereum virtual machine:
using the K framework [9], the Lem language [10], F* [8], which can serve as
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a basis for formal verification of the contract code. Why3 platform for deduc-
tive program verification was recently applied for writing and verifying smart
contracts [16].

5 Conclusion and Future Work

We have developed a formal specification3 of the Cap9 framework using the
Isabelle/HOL theorem prover and proved its internal consistency. To create it we
have employed a refinement approach based on representation functions, which
allowed us to e�ciently use powerful automated reasoning tools provided with
Isabelle. We have found Isabelle/HOL to be suitable for developing specifications
of smart contracts, although some minor issues were identified and outlined.

The next step is formal verification of the Ewasm implementation of the
Cap9 framework for its compliance with the Isabelle/HOL specification, which
may require developing some additional tools. Other possible direction is to
develop and verify a higher level permission system that is based on the Cap9
primitives.
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Abstract. Smart contracts are programs that constitute the main ingre-
dients of decentralized applications (DApps) running on top of blockchain
networks like Ethereum, EOS or Tezos. From a computing point of view,
smart contracts are reminiscent to distributed objects used through sev-
eral entry points by an unknown number of accounts. Like any (concur-
rent) program, smart contracts may have bugs. But contrary to tradi-
tional applications, once deployed on a blockchain, DApps can neither
be removed nor modified. Unfortunately, but not surprisingly, it has re-
cently been revealed that a large number of smart contracts contain
critical security vulnerabilities.
To help DApps programmers, we propose in this paper to model smart
contracts into the declarative input language of Cubicle, a model checker
for parameterized systems based on SMT. In our approach, smart con-
tract code, as well as the transactional model of the blockchain, are
encoded as a state machine on which safety properties of interest are
encoded and verified. We show the success of our technique through
the simple yet prime example of an auction. This preliminary result is
very promising and lays the foundations for a complete and automatized
framework for the design and certification of smart contracts.

Keywords: Blockchain, Smart-contracts, Model Checking, MCMT

1 Introduction

The number of decentralized applications (DApps) running on top of blockchain
networks is growing very fast. According to [3], there are now more than 2,700
DApps available on the Ethereum and EOS platforms which generate 1.6 million
transactions per day for a volume of 19 million USD. These DApps interact with
the blockchain through around 40,000 smart contracts.

A smart contract is a stateful program stored in the blockchain with which
a user (human or computer) can interact. From a legal perspective, a smart
contract is an agreement whose execution is automated. As such, its revocation or
modification is not always possible and worse than that, what the code of a smart
contract does is the law . . . no matter what it may end up doing. Unfortunately,
like any program, smart contracts may have bugs. Given the potential financial
risks, finding these bugs before the origination of the contracts in the blockchain
is an important challenge, both from economic and scientific points of view.



Various formal methods have been used to verify smart contracts. In [5],
the authors present a shallow embedding of Solidity within F⇤, a programming
language aimed at verification. Other similar approaches are based on deduc-
tive verification platforms like Why3 [11, 13]. Interactive proof assistants (e.g.
Isabelle/HOL or Coq) have also been used for modeling and proving properties
about Ethereum and Tezos smart contracts [4, 1].

A common thread here is the use of general-purpose frameworks based on
sequential modeling languages. However, smart contracts can be considered state
machines [2, 10] whose execution model, according to [14], is closer to that of a
concurrent programming language rather than a sequential one. In this context,
the use of model checking techniques becomes highly appropriate [12, 6].

An important aspect of blockchains is that they are completely open. As a
consequence, smart contracts are state machines that need to be conceived for
an unknown (and potentially varying) number of users. This parameterized side
of blockchains has not previously been taken into account.

In this paper, we propose to model smart contracts into the declarative in-
put language of Cubicle, a model checker for parameterized systems based on
Satisfiability Modulo Theories (SMT) techniques. In our approach, smart con-
tract code, as well as the transactional model of the blockchain, are encoded as
a state machine on which safety properties of interest are encoded and verified.
Our contributions are as follows:

– A two-layer framework for smart contract verification in Cubicle (Section
3). The first layer is a model of the blockchain transaction mechanism. The
second layer models the smart contract itself.

– A description of how to express smart contract properties as Cubicle safety
properties using both ghost variables and model instrumentation (Section 4)

– A way of interpreting Cubicle error traces as part of the smart contract
development cycle (Section 5)

Throughout the paper, we illustrate our framework with a simple auction
contract written in Solidity (Section 2).

2 A Motivating Example

Our example contract is based on an open auction example given in Solidity’s
o�cial documentation. We will be focusing on the functions and variable decla-
rations in Figure 1.

Once the SimpleAuction contract is created and the auction has begun, any
person (client) can bid money to win. The contract has three key variables (lines
3-5):

– highestBidder, the client with the current highest bid (winner);
– highestBid, the bid amount of the above client;
– pendingReturns, a map of clients to their bids, used to return money.



In order to bid, a client needs to call the bid function on line 8. The require-
ments are that (i) the auction still be open and (ii) the client’s bid be bigger than
highestBid. If these conditions are fulfilled, pendingReturns for the old winner is
set to the winner’s old winning amount, and highestBidder and highestBid are set
to the client (the new winner).
If a client wishes to withdraw their bid, they need to call the withdraw function
on line 18. This function has no particular requirements. It simply checks that
the client requesting their money has something in pendingReturns. If that is
true, pendingReturns is set to zero and then the money is sent to the client via
send on line 22. If send fails then pendingReturns reverts back to the original
sum and withdraw returns false to indicate that the action failed. If everything
worked, the function returns true.

1 contract S imp leAuc t i on {
2 / / . . .
3 address pub l i c h i g h e s tB i d d e r ;
4 u in t pub l i c h i g h e s tB i d ;
5 mapping ( address => u in t ) pend ingRe tu rn s ;
6 bool ended ;
7
8 f unc t i on b id ( ) pub l i c payable {
9 r equ i r e (now <= auctionEndTime ,

10 ”Auct ion a l r e a d y ended . ” ) ;
11 r equ i r e (msg . v a l u e > h i ghe s tB id ,
12 ”There a l r e a d y i s a h i g h e r b i d . ” ) ;
13 i f ( h i g h e s tB i d != 0) {
14 pend ingRe tu rn s [ h i g h e s tB i d d e r ] = h i g h e s tB i d ;
15 }
16 h i g h e s tB i d d e r = msg . s e nde r ;
17 h i g h e s tB i d = msg . v a l u e ;
18 emit H i gh e s tB i d I n c r e a s e d (msg . s ender , msg . v a l u e ) ;
19 }
20 f unc t i on withdraw ( ) pub l i c r e t u r n s ( bool ) {
21 u in t amount = pend ingRe tu rn s [msg . s e nde r ] ;
22 i f ( amount > 0) {
23 pend ingRe tu rn s [msg . s e nde r ] = 0 ;
24 i f ( !msg . s e nde r . send ( amount ) ) {
25 pend ingRe tu rn s [msg . s e nde r ] = amount ;
26 re tu rn f a l s e ;
27 }
28 }
29 re tu rn t r u e ;
30 }
31 / / . . .

Fig. 1: Auction contract in Solidity

When a client calls the SimpleAuction contract, he needs to be sure that certain
properties hold. These properties can be simple enough that you can see them



in the code, or they can be more complex to the point where you can’t prove
them through the code alone. Consider two properties:

(a) “Each new winning bid is superior to the old winning bid”
(b) “I do not lose money”

Property (a) is easy to see in the code as it’s the requirement on line 10 of
Figure 1. Property (b) on the other hand, while extremely important, is not
obvious. A client needs to be sure that he is not going to lose his money due
to the Code is law element, meaning that anything that happens cannot be
changed or undone. So if, for whatever reason, a client does lose money through
the SimpleAuction contract, no one can do anything about it. Which is why being
sure of a property like “I do not lose money” is crucial. To do that, we propose
to model the smart contract using the model checker Cubicle. This requires not
only a model of the smart contract itself, but also of the underlying blockchain
semantics.

3 Modeling a smart contract

Anything done by a smart contract can be traced back to its blockchain. If
highestBidder is modified, that means that somewhere in the blockchain, there
is a transaction that called bid with a su�ciently large sum. Not being able to
trace an action back to the blockchain implies a problem. Therefore, modeling
a smart contract requires an accompanying model of the blockchain. We do this
with the help of Cubicle, briefly introduced in the next subsection.

3.1 Cubicle

Cubicle is an SMT-based model checker for parameterized transition systems.
For a more in-depth and thorough explanation, we refer the reader to [7, 8]. For
the purposes of this work, we will focus on a quick overview of the necessary
aspects of Cubicle.

Cubicle input programs represent transition systems described by: (1) a set of
type, variable and array declarations; (2) a formula for the initial states; and (3)
a set of guarded commands (transitions).

Type, variable and array declarations. Cubicle has several built-in data
types, among which are integers (int), booleans (bool), and process identifiers
(proc). Additionally, the user can define enumerations. For instance, the code

type l o c a t i o n = L1 | L2 | L3
var W : l o c a t i o n
var X : i n t
ar ray Z [ proc ] : boo l

defines a type location with three constructors (L1, L2, and L3), two global
variables W and X of types location and int, respectively, and a proc-indexed



array Z. The type proc is a key ingredient here as it is used to parameterize the
system: given a process identifier i, the value Z[i] represents somehow the local
variable Z of i.

Initial states. The content of a system state is fully characterized by the value
of its global variables and arrays. The initial states are defined by an init formula
given as a universal conjunction of literals. For example, the following declaration

i n i t ( i ) { Z [ i ] = Fa l s e && W = L1 }

should be read as : “initially, for all process i, Z[i] is equal to False and W contains
L1”. (Note that the content of variable X is unspecified, and can thus contain
any value)

Transitions. The execution of a parameterized system is defined by a
set of guard/action transitions. It consists of an infinite loop which non-
deterministically triggers at each iteration a transition whose guard is true and
whose action is to update state variables. Each transition can take one or several
process identifiers as arguments. A guard is a conjunction of literals (equations,
disequations or inequations) and an action is a set of variable assignments or
array updates. For instance, the following transition

t r a n s i t i o n t r 1 ( i )
r e qu i r e s { Z [ i ] = Fa l s e }
{ W := L2 ;

X := 1 ; }

should be read as follows : “if there exists a process i such that Z[i] equals False,
then atomically assign W to L2 and X to 1”.

Unsafe states. The safety properties to be verified are expressed in their
negated form and characterize unsafe states. They are given by existentially-
quantified formulas. For instance, the following unsafe formula

unsafe ( i ) { Z [ i ] = Fa l s e && X = 1 }

should be read as follows : “a state is unsafe if there exists a process i such that
Z[i] is equal to False and X equals 1”.

Error traces. All of the above allows Cubicle to verify a model. If it finds a
way to reach an unsafe state, an error trace is printed, such as the following

E r r o r t r a c e : I n i t �> t2 (#1) �> t3 (#3) �> unsafe [ 1 ]

This lets the user check which sequence of transitions led to the unsafe state. A
number preceded by # is a process identifier. This means that t2(#1) stands for
process 1 activating that transition. If you have multiple unsafe states declared,
the index next to unsafe lets you know which one was reached.

3.2 Blockchain model

To model the blockchain we first need to model the elements that will constitute
transactions seen in the blockchain.



type c a l l = Bid | Withdraw | Send | F i n i s h | None

var Cmd : c a l l
var Value : i n t
var Sender : p roc
var Recv : p roc

The constructors of type call represent calls to smart contract entry points. Bid
and Withdraw correspond to functions bid() and withdraw(). Finish corresponds
to a function to close the auction (not pictured in Figure 1). Send is used to
represent transactions to the sender (e.g. line 24 of Figure 1) while None means
absence of transactions. The elements of a transaction are defined by four vari-
ables:

– Cmd, the calls to an entry point;
– Value, the amount of money attached to a transaction;
– Sender, who calls the contract;
– Recv; the receiver, used in the case of Withdraw, where the contract calls a

client.

Once the elements of a transaction are declared, the next step is to model the
transaction mechanism of the blockchain. For that, we define three transitions
to simulate transactions to the three smart contract entry points.

t r a n s i t i o n c a l l b i d ( i )
r e qu i r e s { Cmd = None }
{

Cmd := Bid ;
Value := Rand . I n t ( ) ;
Sender := i ;

}

t r a n s i t i o n c a l l w i t h d r aw ( i )
r e qu i r e s { Cmd = None }
{

Cmd := Withdraw ;
Sender := i ;

}

t r a n s i t i o n c a l l f i n i s h ( i )
r e qu i r e s { Cmd = None }
{

Cmd := F i n i s h ;
Sender := i ;

}

Each transaction has a parameter i which represents the client who called the
corresponding entry point (the sender in Solidity). The only requirement indi-
cates that the contract can’t be doing something else simultaneously (Cmd =

None). The e↵ects of these transitions are simple: Cmd is set to the correspond-
ing constructor (Bid, Withdraw, or Finish, respectively) and the variable Sender is



assigned to i. In call bid, the variable Value is set to a (positive) random integer
corresponding to the amount bid by i.
Once the blockchain has been modeled, we can move on to modeling the contract
itself.

3.3 Smart contract model

To model the actual contract, we need to model its variables and its functions.

var Bidde r : p roc
var Bidd ing : i n t
var End auc t i on : boo l
var Owner : p roc
ar ray PR[ proc ] : i n t

Bidder and Bidding correspond to highestBidder and highestBid, while End auction

corresponds to ended. The variable Owner is the person who started the auction,
meaning created the contract. The array PR stands for the pendingReturns map
in Figure 1. It is worth noting that both variables are finite but unbounded data
structures.
The functions bid and withdraw are modeled as Cubicle transitions. These tran-
sitions serve as entry points for our contract.

t r a n s i t i o n b id ( i )
r e qu i r e s { End auc t i on = Fa l s e &&

Cmd = Bid && i = Sender && i <> Bidde r &&
PR[ i ] = 0 && Value > Bidd ing }

{
Bidd ing := Value ;
B idde r := i ;
PR[ B idde r ] := B idd ing ;
Cmd := None ;

}

t r a n s i t i o n withdraw ( i )
r e qu i r e s { Cmd = Withdraw && i = Sender && PR[ i ] > 0 }
{ PR[ i ] := 0 ;

Cmd := Send ;
Value := PR[ i ] ;
Recv := i ;

}

Transition bid is called by one process, i, who has to be the Sender, but not the
current Bidder. The other requirements should be read as follows:

End auction = False: the auction is open
Cmd = Bid: the transaction in the blockchain is Bid
PR[ i ] = 0: the new bidder hasn’t previously bid
Value > Bidding: the new bid is bigger than the old winning bid



The e↵ects are simple, Bidder and Bidding are set to the new values, PR for the
old winner who has now been outbid is set to his old bid value, and Cmd is reset
to None to indicate that the contract is no longer occupied.
Similarly, the requirements of transition Withdraw are the following:

Cmd = Withdraw: the transaction in the blockchain is a call to withdraw

i = Sender: the process i is the one that called the function
PR[ i ] > 0: the person previously bid and was outbid by someone

The e↵ects of transition withdraw are slightly di↵erent since withdraw goes on
to send money to whoever called the method. The receiver is now set to i (Recv
:= i), and the value that will accompany the transaction is set to the amount
of money to be returned (Value := PR[ i ]). The pending return PR[ i ] is reset
globally for client i (PR[ i ] = 0) and Cmd is set to Send, to indicate that the
contract is calling the client’s method. The transition which Send corresponds
to can be seen below:

t r a n s i t i o n v a l u e ( i )
r e qu i r e s { Cmd = Send && Recv = i }
{ Cmd := None ; }

This transition checks that Send was in fact called (Cmd = Send), as well as the
fact that the receiver is the currently active process (Recv = i). It then resets
Cmd to None to free the contract.

4 Defining and Verifying Properties

Recall that we want to be sure of certain properties:

(a) “Each new winning bid is superior to the old winning bid”
(b) “I do not lose money”

Once defined in an informal manner, the properties need to be converted into
safety properties. This is not always straightforward and might require additional
information. This is done via a two-step process consisting of (i) defining extra
logical formulas (ghost variables) and (ii) instrumenting the model with these
formulas.

4.1 Ghost variables and Model instrumentation

Ghost variables, introduced below, will neither appear in the original Solidity
contract, nor will they impact the Cubicle model outside of property verification.

ar ray Out [ p roc ] : i n t
ar ray I n [ p roc ] : i n t
var Old B idd ing : i n t



The variables Out and In are for property (b). In is an array storing how much
each client (aka process) bids, and Out stores how much they get back if/when
they call withdraw. Old Bidding tracks the old highest bid for property (a). The
code below is the instrumented model. Transition withdraw has been omitted
since it is not instrumented.

t r a n s i t i o n b id ( i )
r e qu i r e s { End auc t i on = Fa l s e &&

Cmd = Bid && i = Sender && i <> Bidde r &&
PR[ i ] = 0 && Value > Bidd ing }

{
Bidd ing := Value ;
B idde r := i ;
PR[ B idde r ] := B idd ing ;
Cmd := None ;
O ld B idd ing := Bidd ing ;
I n [ i ] := In [ i ] + Value ;

}

t r a n s i t i o n v a l u e ( i )
r e qu i r e s { Cmd = Send && Recv = i }
{ Cmd := None ;

Out [ i ] := Out [ i ] + Value ;
}

The ghost variables appear only in the action parts of the transitions. The bid

transition utilizes both Old Bidding and In. It updates Bidding to set a new
highest bid value. To keep track of what the old value was, Old Bidding is set
to Bidding’s value. In is updated for the new bidder with their bid value. The
transition value is instrumented instead of withdraw, since the most important
action, that is giving the client back their money, happens during the value

transition. It uses Out to keep track of how much money has been returned.

The ghost variables are also part of the initial state declaration.

i n i t ( i ) { End auc t i on = Fa l s e && Bidd ing = 0 && Cmd = None
&& PR[ i ] = 0 && In [ i ] = 0 && Out [ i ] = 0
&& Old B idd ing = 0 }

That is to say, the auction hasn’t ended, there is no winning bid, the contract
isn’t doing anything, and no one has bid and subsequently withdrawn money.

4.2 Defining properties

Once the code is instrumented, we can introduce the safety properties we want
Cubicle to check.

Property (a): New bids are higher.

The first property is “Each new winning bid is superior to the old winning bid”.
This property can be easily defined by the following unsafe formula which uses
only the ghost variables Old Bidding and Bidding.



unsafe ( ) { Old B idd ing > Bidd ing }

Checking property (a) with the above formula simply means declaring
Old bidding being superior to Bidding as unsafe, but only if the model was cor-
rectly instrumented with these variables.

Property (b) : Do I lose money ?

Defining this property is less obvious. While ghost variables have been introduced
to keep track of money exchanges between users and the contract, another prob-
lem is the lack of precision of the sentence. When should we check that a user
did not lose money? At the end of the auction? If so, when do we consider the
auction to really be over?

We will make these issues more concrete in the next section. In particular, we
shall explain how we arrived at the following formulation of property (b):

unsafe ( i ) { End auc t i on = True && i <> Bidde r && PR[ i ] = 0
&& Cmd = None && Out [ i ] < I n [ i ] }

5 Interpreting Cubicle Error Traces

As stated previously, the tricky property is “I do not lose money”. The logical
implication of “I do not lose money” is that if the auction is over, (End auction

= True), then your Out isn’t less than your In.

unsafe ( i ) { End auc t i on = True && Out [ i ] < I n [ i ] }

Except Cubicle prints the following error trace:

E r r o r t r a c e : I n i t �> c a l l b i d (#1) �> b id (#1) �>
c a l l f i n i s h (#1) �> f i n i s h a u c t i o n ( ) �> unsafe

UNSAFE !

Upon further inspection, it becomes obvious why this state is reached. This is
true for every client, even the winner, who technically does lose money, so to
speak. We modify our unsafe state to the following by adding that the process
cannot be the winner (Bidder <> i).

unsafe ( i ) { End auc t i on = True && i <> Bidde r &&
Out [ i ] < I n [ i ] }

However, Cubicle still says

E r r o r t r a c e : I n i t �> c a l l b i d (#1) �> b id (#1) �>
c a l l b i d (#2) �> b id (#2) �>
c a l l f i n i s h (#1) �> f i n i s h a u c t i o n ( ) �> unsafe

UNSAFE !

as what’s missing is checking whether or not a client withdrew their bid. We
incorporate that check below.



unsafe ( i ) { End auc t i on = True && i <> Bidde r &&
PR[ i ] = 0 && Out [ i ] < I n [ i ] }

but Cubicle can still reach that state:

E r r o r t r a c e : I n i t �> c a l l b i d (#1) �> b id (#1) �>
c a l l b i d (#2) �> b id (#2) �>
c a l l f i n i s h (#1) �> f i n i s h a u c t i o n ( ) �>
c a l l w i t h d r aw (#1) �> withdraw (#1) �> unsafe

UNSAFE !

Once the smart contract has completely finished every action associated with a
function (i.e. transition), it resets Cmd to None, which we haven’t checked for.
We add that to our unsafe state.

unsafe ( i ) { End auc t i on = True && i <> Bidde r && PR[ i ] = 0
&& Cmd = None && Out [ i ] < I n [ i ] }

The above is the correct implementation of “I do not lose money.” This time
Cubicle replies Safe

But error traces aren’t necessarily the result of an incorrectly written unsafe
state. Looking back at Figure 1, there is an equals sign on line 12. This essentially
implies that you cannot bid multiple times in a row without calling withdraw

between every bid. This is why PR[ i ] = 0 needs to be in the requirements of
transition bid. Removing this literal (or putting it in a comment) like in the
transition below

t r a n s i t i o n b id ( i )
r e qu i r e s { End auc t i on = Fa l s e &&

Cmd = Bid && i = Sender && i <> Bidde r
(∗&& PR[ i ] = 0∗) && Value > Bidd ing }

. . .

makes Cubicle reach the correctly-implemented “I do not lose money” unsafe
state with the following trace:

Unsafe t r a c e : c a l l b i d (#1) �> b id (#1) �> c a l l b i d (#3) �>
b id (#3) �> c a l l b i d (#1) �> b id (#1) �>
c a l l b i d (#2) �> b id (#2) �> c a l l f i n i s h (#2) �>
f i n i s h a u c t i o n ( ) �> c a l l w i t h d r aw (#1)�>
withdraw (#1) �> v a l u e (#1) �> unsafe

UNSAFE !

The scenario represented by this trace is not immediately evident as it brings
into play 3 clients (processes) and 13 transitions.

6 Conclusion & Future Work

In this paper we proposed a two-layer framework for smart contract verification
with the model checker Cubicle. This method implements a model of the smart
contract itself and the blockchain transaction mechanism behind it. Our method



introduces a way of verifying various types of functional properties linked to a
smart contract as Cubicle safety properties. Since this is done through ghost vari-
ables and model instrumentation, it has no impact on the original smart contract
code, meaning it is independent of any particular smart contract language, and
is therefore generalizable and usable for multiple smart contract languages. We
also describe a way of interpreting potential error traces generated by Cubicle,
and how they can aid in the development of a smart contract. An immediate line
of future work is to automate this stepwise process. We need to define an abstract
high-level language to express the properties to be checked by Cubicle. From this
language, the ghost variables will be automatically generated to instrument the
Cubicle code. Furthermore, we would also like to consider automatic translation
of Solidity or Michelson code to Cubicle.
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Smart Contract Interactions in Coq

Jakob Botsch Nielsen and Bas Spitters

Concordium Blockchain Research Center, Computer Science, Aarhus University

Abstract. We present a model/executable specification of smart con-
tract execution in Coq. Our formalization allows for inter-contract com-
munication and generalizes existing work by allowing modelling of both
depth-first execution blockchains (like Ethereum) and breadth-first exe-
cution blockchains (like Tezos). We represent smart contracts programs
in Coq’s functional language Gallina, enabling easier reasoning about
functional correctness of concrete contracts than other approaches. In
particular we develop a Congress contract in this style. This contract
– a simplified version of the infamous DAO – is interesting because of
its very dynamic communication pattern with other contracts. We give
a high-level partial specification of the Congress’s behavior, related to
reentrancy, and prove that the Congress satisfies it for all possible smart
contract execution orders.

1 Introduction

Since Ethereum, blockchains make a clear separation between the consensus

layer and the execution of smart contracts. In Ethereum’s Solidity language con-

tracts can arbitrarily call into other contracts as regular function calls. Modern

blockchains further separate the top layer in an execution layer and a contract

layer. The execution layer schedules the calls between the contracts and the con-

tract layer executes individual programs. The choice of execution order di↵ers
between blockchains. For example, in Ethereum the execution is done in a syn-

chronous (or depth first) order: a call completes fully before the parent continues,

and the parent is able to observe its result. Tezos uses the breadth first order.

We provide
1
a model/executable specification of the execution and contract

layer of a third generation blockchain in the Coq proof assistant. We use Coq’s

embedded functional language Gallina to model contracts and the execution

layer. This language can be extracted to certified programs in for example Haskell

or Ocaml. Coq’s expressive logic also allows us to write concise proofs. The

consensus protocol provides a consistent global state which we treat abstractly

in our formalization.

We work with an account-based model. We could also model the UTxO

model by converting a list of UTxO transactions to a list of account transac-

tions [Zah18]. Like that work, we do not model the cryptographic aspects, only

the accounting aspects: the transactions and contract calls.

1
https://gitlab.au.dk/concordium/smart-contract-interactions/tree/v1.0
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This text is organized as follows: Section 2 describes the implementation of

the execution layer in Coq. In Section 3 we provide a simple principled specifica-

tion for the Congress. By using such specifications one avoids having to deal with

reentrancy bugs in a post-hoc way. Section 4 discusses related work. Section 5

concludes.

2 Implementation

2.1 Basic assumptions

Our goal is to model a realistic blockchain with smart contracts. To do so we

will require this blockchain to supply some basic operations that are to be used

both by smart contracts and when specifying our semantics. Our most basic

assumptions are captured as a typeclass:

Class ChainBase :=

{ Address : Type;

address_countable :> Countable Address;

address_is_contract : Address ! bool;

... }.

Specifically we require a countable Address type with a clear separation between

addresses belonging to contracts and to users. While this separation is not pro-

vided in Ethereum its omission has led to exploits before
2
and we thus view it as

realistic that future blockchains allow this. Other blockchains commonly provide

this by using some specific format for contract addresses, for example, Bitcoin

marks addresses with associated scripts using so-called pay-to-script-hash ad-

dresses which always start with 3.

Generally all semantics and smart contracts will be abstracted over an in-

stance of this type, so in the following sections we will assume we are given such

an instance.

2.2 Smart Contracts

We will consider a functional smart contract language. Instead of modelling the

language as an abstract syntax tree in Coq, as in [AS19], we model individual

smart contracts as records with (Coq) functions.

Local state. It is not immediately clear how to represent smart contracts by

functions. For one, smart contracts have local state that they should be able to

access and update during execution. In Solidity, the language typically used in

Ethereum, this state is mutable and can be changed at any point in time. It

is possible to accomplish something similar in pure languages, for example by

using a state monad which allows state to be updated at any point during a

2 See for instance https://www.reddit.com/r/ethereum/comments/916xni/how_to_

pwn_fomo3d_a_beginners_guide/
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function’s execution, but we do not take this approach. Instead we use a more

traditional functional approach where the contract takes as input its current

state, and returns a single new, updated state.

However, di↵erent contracts will typically have di↵erent types of states. A

crowdfunding contract may wish to store a map of backers in its state while an

auction contract would store information about ongoing auctions. To facilitate

this polymorphism we use an intermediate storage type called SerializedValue.

We define conversions between SerializedValue and primitive types like booleans

and integers plus derived types like pairs, sums and lists. Generally this allows

conversion from and to SerializedValue to be handled implicitly and mostly

transparently to the user.

Inter-contract communication. In addition to local state we also need some way

to handle inter-contract communication. In Solidity contracts can arbitrarily call

into other contracts as regular function calls. This would once again be possible

with a monadic style, for example by the use of a promise monad where the

contract would ask to be resumed after a call to another contract had finished.

To ease reasoning we choose a simpler approach where contracts return actions

that indicate how they would like to interact with the blockchain, allowing trans-

fers, contract calls and contract deployments only at the end of execution. The

blockchain will then be responsible for scheduling these actions in its execution

layer.

With this design we get a clear separation between contracts and their in-

teraction with the chain. That such separations are important has been realized

before, for instance in the design of Michelson and Scilla [SKH18a]. Indeed, a

”tail-call” approach like this forces the programmer to update the contract’s

internal state before making calls to other contracts, mitigating by construction

reentrancy issues such as the infamous DAO exploit.

Thus, contracts will take their local state and some data allowing them to

query the blockchain. As a result they then optionally return the new state

and some operations (such as calls to other contract) allowing inter-contract

communication. Overall, this design is very similar to the Tezos blockchain where

contracts are written in Michelson which follows a similar approach.

The Ethereum model may be compared to object-oriented programming. Our

model is similar to the actor model, as contracts do not read or write the state

of another contract directly, but instead communicate via messages. One finds

similar models in Liquidity and in Scilla, which is based on IO-automata.

The contract’s view. Smart contracts are typically allowed to query various

data about the blockchain during execution, such as the current block height.

Normally this is provided as special instructions. For instance, this is the case

in EVM bytecode used for Ethereum. Since we use a shallow embedding we will

instead pass this as an additional argument to the contract. In our framework,

we give contracts the following view of the blockchain:

Definition Amount := Z.
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Record Chain :=

{ chain_height : nat;

current_slot : nat;

finalized_height : nat;

account_balance : Address ! Amount; }.

We allow contracts to access basic details about the blockchain, like the

current chain height, slot number and the finalized height. The slot number is

meant to be used to track the progression of time; in each slot, a block can

be created, but it does not have to be. The finalized height allows contracts

to track the current status of the finalization layer available in for example

the Concordium blockchain [MMNT19]. This height is di↵erent from the chain

height in that it guarantees that blocks before it will not be changed. We finally

also allow the contract to access balances of accounts, as is common from other

blockchains.

The contract. The final piece of information provided to contracts when they

are executed is information about the call. Overall, we thus represent contracts

using the following types:

Record ContractCallContext :=

{ ctx_from : Address;

ctx_contract_address : Address;

ctx_amount : Amount; }.

Inductive ActionBody :=

| act_transfer (to : Address) (amount : Amount)

| act_call (to : Address) (amount : Amount)

(msg : SerializedValue)

| act_deploy (amount : Amount) (c : WeakContract)

(setup : SerializedValue)

with WeakContract :=

| build_weak_contract

(init : Chain ! ContractCallContext !
SerializedValue (* setup *) !
option SerializedValue)

(receive : Chain ! ContractCallContext !
SerializedValue (* state *) !
option SerializedValue (* message *) !
option (SerializedValue * list ActionBody)).

Here the ContractCallContext type represents information that is common

to when the contract executed due to deployment or due to receiving a mes-

sage. It contains the source address (ctx_from), the contract’s own address

(ctx_contract_address) and the amount of money transferred (ctx_amount). The

ActionBody type represents operations that interact with the chain. It allows for

simple messageless transfers (act_transfer), calls with messages (act_call), and

deployment of new contracts (act_deploy). These do not contain a source address

to model that while contracts can interact with the blockchain, they do not get

to specify the source (which is their own address) when they do so. Finally, a
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contract is two functions. The init function is used when a contract is deployed

to set up its initial state, while the receive function will be used for transfers

and calls with messages afterwards. They both return option types, allowing the

contract to signal invalid calls or deployments. The receive function additionally

returns a list of ActionBody that it wants to be performed in the chain after, as

we described above. Later, we will also use a representation where there is a

source address; we call this type Action:

Record Action :=

{ act_from : Address;

act_body : ActionBody; }.

This type might resemble what is normally called a transaction, but we make

a distinction between the two. An Action is an unevaluated operation that,

when executed by an implementation, a↵ects the blockchain’s state. Particularly,
compared to a transaction it is underrepresented in that act_deploy does not

contain the address of the contract to be deployed. This models that it is the

implementation that picks the address of a newly deployed contract, not the

contract making the deployment. We will later describe our ActionEvaluation

type which captures more in depth the choices made by the implementation

while executing an action.

The functions of contracts may seem peculiar in that they are typed using

SerializedValue parameters. This is also the reason for the name WeakContract.

Generally this makes specifying semantics simpler, since the semantics can deal

with contracts in a generic way. However, for users of the framework writing

concrete contracts this form of ”string-typing” makes things harder. For this

reason we provide a dual notion of a strong contract, which is a polymorphic

version of contracts generalized over the setup, state and message types. Users

of the framework will only need to be aware of this notion of contract, which

does not contain references to SerializedValue at all.

One could also imagine an alternative representation using a dependent

record of setup, state and message types plus functions over those types. How-

ever, such a representation makes it nearly impossible for contracts to interact

with other contracts since they will somehow need to prove that the messages

they are sending are of the types stored in this record. In particular this is di�-

cult when the blockchain has no knowledge about individual contracts and only

works generically with them.

2.3 Semantics

Next we wish to specify the semantics of the execution layer.

Environments. The Chain type given above is merely the contract’s view of the

blockchain and does not store enough information to allow the blockchain to

run actions. More specifically we need to be able to look up information about

currently deployed contracts like their functions and state. We augment the Chain

type with this information and call it an Environment:
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Record Environment :=

{ env_chain :> Chain;

env_contracts : Address ! option WeakContract;

env_contract_states :

Address ! option SerializedValue; }.

It is not hard to define functions that allow us to make updates to environ-

ments. For instance, inserting a new contract is done by creating a new function

that checks if the address matches and otherwise uses the old map. In other words

we use simple linear maps in the semantics. In similar ways we can update the

rest of the fields of the Environment record.

Evaluation of actions. When contracts return actions the execution layer will

somehow need to evaluate the e↵ects of these actions. We define this as a ”proof-

relevant” relation ActionEvaluation in Coq:

ActionEvaluation : Environment ! Action !
Environment ! list Action ! Type

This relation captures the requirements and e↵ects of executing the action

in the environment. It is ”proof-relevant”, meaning that it can be inspected,

which is useful since actions by themselves are underspecified. For example, a

contract can return an action that deploys a new contract; in this case we leave

it up to the implementation to pick an appropriate address for the new contract.

However, when reasoning about action evaluation it is useful to know which

address a contract was deployed to and this information can be retrieved by

inspecting the evaluation.

We define the relation by three cases: one for transfers of money, one for

deployment of new contracts, and one for calls to existing contracts. To exemplify

this relation we give its formal details for the simple transfer case below:

| eval_transfer :

forall {pre : Environment}

{act : Action}

{new_env : Environment}

(from to : Address)

(amount : Amount),

amount  account_balance pre from !
address_is_contract to = false !
act_from act = from !
act_body act = act_transfer to amount !
EnvironmentEquiv

new_env

(transfer_balance from to amount pre) !
ActionEvaluation pre act new_env []

In this case the sender must have enough money and the recipient cannot

be a contract. When this is the case a transfer action and the old environment

evaluate to the new environment where the account_balance has been updated

appropriately. Finally, such a transfer does not result in more actions to execute
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since it is not associated with execution of contracts. Note that we close the

evaluation relation under extensional equality (EnvironmentEquiv).

We denote this relation by the notation h�, ai + (�0, l). The intuitive under-

standing of this notation is that evaluating the action a in environment � results

in a new environment �0
and new actions to execute l.

Chain traces. The Environment type captures enough information to evaluate

actions. We further augment this type to keep track of the queue of actions

to execute. In languages like Simplicity [O’C17] this data is encoded implicitly

in the call stack, but since interactions with the blockchain are explicit in our

framework we keep track of it explicitly in the ChainState type.

Record ChainState :=
{ chain_state_env :> Environment;
chain_state_queue : list Action; }.

We are now ready to define what it means for the chain to take a step.

Formally, this is defined as a ”proof-relevant” relation ChainStep:

ChainStep : ChainState ! ChainState ! Type

We denote this relation with the notation (�, l) ! (�0, l0), meaning that we

can step from the environment � and list of actions l to the environment �0
and

list of actions l0. We give this relation as simplified inference rules below.

step-block
b valid in � acts from users

(�, []) ! (add block b �, acts)

step-action
h�, ai + (�0, l)

(�, a :: l0) ! (�0, l ++ l0)

step-permute
Perm(l, l0)

(�, l) ! (�, l0)

The step-block rule allows the addition of a new block with associated

actions. This is the only way to add new actions into a trace when the queue is

empty. We require that the block information (b in the rule) is valid in the current

environment (the b valid in � premise), meaning that it needs to satisfy some

well-formedness conditions. For example, if the chain currently has height n, the
next block added needs to have height n + 1. There are other well-formedness

conditions on other fields, such as the finalized height, but we omit them here for

brevity. Another condition is that all added actions must come from users (the

acts from users premise). This models the real world where transactions added

in blocks are ”root transactions” from users, and carrying out these transactions

might cause contracts to generate new transactions. In our model this condition is

crucial to ensure that transfers from contracts can happen only due to execution

of their associated code. When the premises are met we update information

about the current block (such as the current height and the balance of the

creator, signified by the add block function) and update that the queue now

contains the actions that were added.

The step-action rule allows the evaluation of the action in the beginning of

the queue, replacing it with the resulting new actions to execute. This new list (l
in the rule) is concatenated at the beginning, corresponding to using the queue
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as a stack. This results in a depth-first execution order of actions. The step-
permute rule allows an implementation to use a di↵erent order of reduction

by permuting the queue at any time. For example, it is possible to obtain a

breadth-first order of execution by permuting the queue so that newly added

events are in the back. In this case the queue will be used like an actual FIFO

queue.

Building upon steps we can further define traces as the proof-relevant re-

flexive transitive closure of the step relation. In other words, this is a sequence

of steps where each step starts in the state that the previous step ended in.

Intuitively the existence of a trace between two states means that there is a se-

mantically correct way to go between those states. If we let " denote the empty

environment with no queue this allows us to define a concept of reachability.
Formally we say a state (�, l) is reachable if there exists a trace starting in " and

ending in (�, l). In Coq we define this as

Definition reachable (state : ChainState) : Prop :=

inhabited (ChainTrace empty_state state).

Generally, only reachable states are interesting to consider and most proofs

are by induction over the trace to a reachable state.

2.4 Building blockchains

We connect our semantics to an executable definition of a blockchain with a

typeclass in Coq:

Class ChainBuilderType := {

builder_type : Type;

builder_initial : builder_type;

builder_env : builder_type ! Environment;

builder_add_block

(builder : builder_type)

(header : BlockHeader)

(actions : list Action) :

option builder_type;

builder_trace (builder : builder_type) :

ChainTrace empty_state

(build_chain_state (builder_env builder) []);}.

A chain builder is a dependent record consisting of an implementation type

(builder_type) and several fields using this type. It must provide an initial

builder, which typically would be an empty chain, or a chain containing just

a genesis block. It must also be convertible to an environment allowing to query

various information about the state. Furthermore, it must define a function that

allows addition of new blocks. Finally, the implementation needs to be able to

give a trace showing that the current environment is reachable with no more ac-
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tions left in the queue to execute. This trace captures a definition of soundness,

since it means that the state of such a chain builder will always be reachable
3
.

Instantiations. A priori it is not a guarantee that the semantics we have defined

are reasonable. More formally it is possible that ChainBuilderType is uninhabited

which makes proving properties based on it uninteresting. Thus, as a sanity

check, we implement two instances of this typeclass. Both of our implementations

are based on finite maps from the std++ library used by Iris [JKJ
+
18] and

are thus relatively e�cient compared to the linear maps used to specify the

semantics. The di↵erence in the implementations lies in their execution model:

one implementation uses a depth-first execution order, while the other uses a

breadth-first execution order. The former execution model is similar to the EVM

while the latter is similar to Tezos.

These implementations are useful as sanity checks but they also serve other

useful purposes in the framework. Since they are executable they can be used

to test concrete contracts that have been written in Coq. This involves writing

the contracts and executing them using Coq’s Compute vernacular. In addition,

they can also be used to give counter-examples to properties. In the next section

we will introduce the Congress contract, and we have used the depth-first im-

plementation of our semantics to formally show that this contract with a small

change is vulnerable to reentrancy.

3 Case: Congress – a simplified DAO

In this section we will present a case study of implementing and partially speci-

fying a complex contract in our framework.

3.1 The Congress contract

Wang [Wan18] gives a list of eight interesting Ethereum contracts. One of these

is the so-called Congress in which members of the contract vote on proposals.
Proposals contain transactions that, if the proposal succeeds, are sent out by the

Congress. These transactions are typically monetary amounts sent out to some

address, but they can also be arbitrary calls to any other contract.

We pick the Congress contract because of its complex dynamic interaction

pattern with the blockchain and because of its similarity to the infamous DAO

contract that was deployed on the Ethereum blockchain and which was eventu-

ally hacked by a clever attacker exploiting reentrancy in the EVM.

The Congress can be seen as the core of the DAO contract, with the DAO

implementing various additional mechanisms on top of voting for proposals. For

example, proposals can be seen as investments into other projects, and the DAO

contract kept track of the voters on each proposal to be able to pay back rewards

to these people in case the project turned out successful.

3 We do not currently include a notion of completeness. For instance, it is possible to
define a trivial chain builder that just ignores the blocks and actions to be added.



10 Jakob Botsch Nielsen and Bas Spitters

We implement the logic of the Congress in roughly 150 lines of Gallina code.

The type of messages accepted by the Congress can be thought of as its interface

since this is how actors on the blockchain can interact with it. For the Congress

we define the following messages:

Inductive Msg :=

| transfer_ownership : Address ! Msg

| change_rules : Rules ! Msg

| add_member : Address ! Msg

| remove_member : Address ! Msg

| create_proposal : list CongressAction ! Msg

| vote_for_proposal : ProposalId ! Msg

| vote_against_proposal : ProposalId ! Msg

| retract_vote : ProposalId ! Msg

| finish_proposal : ProposalId ! Msg.

The Congress has an owner who is responsible for managing the rules of the

congress and the member list. By default, we set this to be the creator of the

congress. The owner can transfer his ownership away with the transfer_ownership

message. For example, it is possible to make the Congress its own owner, in

which case all rule changes and modifications to the member list must happen

through proposals (essentially making the Congress a democracy).

Anyone can use the create_proposal and finish_proposalmessages. We allow

proposals to contain any number of actions to send out, though we restrict the

actions to only transfers and contract calls (i.e. no contract deployments). This

restriction is necessary because this would require the state of the Congress to

contain the contracts to deploy. Since contracts are functions in our shallow

embedding this would require storing higher order state which we do not allow

in the framework. This is a downside to the shallow embedding – with a deep

embedding like [AS19], the code could be stored as an AST or bytes.

While proposals can be finished by anyone they must first have been debated

for some period specified in the rules of the congress. During this period, mem-

bers of the congress have the ability to vote for or against the proposal. After

the debating period is over the proposal can be finished and the Congress will

remove it from its internal storage and send out its actions in case it passed.

The conditions for passing are once again specified in the rules, which contain

values such as the margin of yes-votes required.

3.2 A partial specification

The vulnerability of the DAO was in reward payout code in which a specially

crafted contract could reenter the DAO causing it to perform actions an unin-

tended number of times. Specifically, the attacker was able to propose a so-called

split and have the original DAO transfer a disproportionate amount of money to

a new DAO contract under his control. The Congress does not contain similar

code, but the same kind of bug would be possible in code responsible for carrying

out proposals.
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Previous research has focused on defining this kind of reentrancy formally

which we could also define and prove in our framework. Such (hyper-)properties

are interesting, but they also rely heavily on the benefit of hindsight and their

statements are complex and hard to understand. Instead we would like to come

up with a natural specification pertaining to the Congress that a programmer

could reasonably have come up with, even without knowledge of reentrancy. Our

goal with this is to apply the framework in a very concrete setting.

The specification we give is based on the following observation: any transac-

tion sent out by the congress should correspond to an action that was previously

created with a create_proposal message. This is a temporal property because

it says something about the past whenever an outgoing transaction is observed.

Temporal logic is not natively supported by Coq, so this would require some

work. Therefore we prefer a similar but simpler property: the number of actions

in previous create_proposal messages is always greater than or equal to the total

number of transactions the congress has sent out. This is not a full specification

of the behavior of the Congress but proving this property can help increase trust

that the congress is not vulnerable to reentrancy. With such a proof, any bug ex-

ploiting the Congress in a similar way to the DAO would somehow require a new

proposal to be created for each time the exploit was carried out. In particular,

the result would not have been provable in the original DAO contract because

of the reentrancy exploit. Our main result about the congress is a formal proof

that this always holds after adding a block:

Corollary congress_txs_after_block

{ChainBuilder : ChainBuilderType}

prev creator header acts new :

builder_add_block prev creator header acts = Some new !
forall addr,

env_contracts new addr =

Some (Congress.contract : WeakContract) !
length (outgoing_txs (builder_trace new) addr) 
num_acts_created_in_proposals

(incoming_txs (builder_trace new) addr).

This result states that, after adding a block, any address at which a Congress

contract is deployed satisfies the property previously described. Here the function

num_acts_created_in_proposals looks at all previous create_proposal messages

and sums the number of actions in them. The incoming_txs and outgoing_txs

functions are general functions that finds transactions (evaluation of actions) in

a trace. In this sense the property treats the contract as a black box, stating

only things about the transactions that has been observed on the blockchain.

We prove this property by generalizing it and proving something stronger.

Specifically, instead of stating the invariant over just the transactions and pro-

posals we state it over the following data:

– The internal state of the contract; more specifically, the current number of

actions in proposals stored in the internal state.

– The number of transactions sent out by the Congress, as before.
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– The number of actions in the queue where the Congress is the source.

– The number of actions created in proposals, as before.

The key observations being that

1. When a proposal is created, the number of actions created in proposals goes

up, but so does the number of actions in the internal state of the Congress.

2. When a proposal is finished, the number of actions in the internal state goes

down, but the number of actions in the queue goes up accordingly (assum-

ing the proposal was voted for). In other words, actions ”move” from the

Congress’s internal state to the queue.

3. When an outgoing transaction appears on the chain it is because an action

moved out of the queue.

Especially observation 3 is interesting. It allows us to connect the evaluation of

a contract in the past to its resulting transactions on the chain, even though

these steps can be separated by many unrelated steps in the trace.

The proof of the stronger statement is straightforward by inducting over the

trace and showing that it always holds. When deploying the Congress we need

to establish the invariant which boils down to proving functional correctness of

the init function and the usage of some results that hold for contracts which

have just been deployed (for instance, such contracts have not made any out-

going transactions). On calls to the Congress the invariant needs to be reestab-

lished, which boils down to proving functional correctness of the receive func-

tion. Crucially, we can reestablish the invariant because the implementation of

the Congress clears out proposals from its state before the actions in the pro-

posal are evaluated (the DAO was vulnerable because it neglected to do this on

splits). Once we have established this stronger statement the result easily follows

as a direct corollary.

4 Related work

Both Simplicity [O’C17] and Scilla [SKH18a] are smart contract languages with

an embedding in Coq. Temporal properties of several smart contracts have been

verified in Scilla [SKH18b], although our congress contract is more complex than

the contracts described in that paper. We are unaware of an implementation of

such a contract in Scilla. Scilla, as an intermediate language which includes

both a functional part and contract calls, uses a CPS translation to ensure that

every call to another contract is done as the last instruction. In our model, the

high-level language and the execution layer are strictly separated.

The formalization of the EVM in F* [GMS18] can be extracted and used to

run EVM tests to show that it is a faithful model of the EVM. However, they do

not prove properties of any concrete contracts. Instead they consider classes of

bugs in smart contracts and try to define general properties that prevent these.

One of these properties, call integrity, is motivated by the DAO and attempts

to capture reentrancy. Intuitively a contract satisfies call integrity if the calls

it makes cannot be a↵ected by code of other contracts. VerX [PDT
+
19] uses
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temporal logic and model checking to check a similar property. Such statements

are not hard to state in our framework given Coq’s expressive logic, and it seems

this would be an appropriate property to verify for the Congress. Unfortunately

even a correct Congress does not satisfy this property, since it is possible for

called contracts to finish proposals which can cause the Congress to perform

calls. This property could potentially be proven in a version of the Congress

that only allowed proposals to be finished by humans, and not by contracts.

5 Conclusion and future work

We have formalized the execution model of blockchains in Coq and used our

formalization to prove formally a result about a concrete contract. Our formal-

ization of blockchain semantics is flexible in that it accounts both for depth-first

and breadth-first execution order, generalizing existing blockchains and previ-

ous work, while remaining expressive enough to allow us to prove results about

complex contracts. We showed for a Congress – a simplified version of the DAO,

which still has a complex dynamic interaction pattern – that it will never send

out more transactions than have been created in proposals. This is a natural

property that aids in increasing trust that this contract is not vulnerable to

reentrancy like the DAO.

More smart contracts are available in Wang’s PhD thesis [Wan18] and spec-

ifying these to gain experience with using the framework will help uncover how

the framework itself should be improved. In this area it is also interesting to con-

sider more automatic methods to make proving more productive. For example,

temporal logics like LTL or CTL can be useful to specify properties on traces

and model checking these can be automated; see e.g. [PDT
+
19].

Finally, while our current framework is inspired by and generalizes existing

blockchains, there is still more work to be done to get closer to practical imple-

mentations. Gas is notoriously di�cult to deal with in our shallow embedding

because tracking costs of operations can not be done automatically, but monadic

approaches have been used for similar purposes before [MFN
+
18]. To deal with

this problem we plan to connect our shallow embedding with a deep embedding

of the language Oak as described in [AS19], which will also allow proving proper-

ties about Oak contracts in our framework. In the other direction it is interesting

to consider extraction of our contracts into other languages like Liquidity, Oak

or Solidity. This is more directly applicable to current practice.

Acknowledgements We would like to thank the Oak team for stimulating discus-

sions.
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Abstract. The recent release of Solidity 0.5 introduced a new type to
prevent Ether transfers to smart contracts that are not supposed to re-
ceive money. Unfortunately, the compiler fails in enforcing the guarantees
this type intended to convey, hence the type soundness of Solidity 0.5 is
no better than that of Solidity 0.4. In this paper we discuss a paradig-
matic example showing that vulnerable Solidity patterns based on poten-
tially unsafe callback expressions are still unchecked. We also point out
a solution that strongly relies on formal methods to support a type-safer
smart contracts programming discipline, while being retro-compatible
with legacy Solidity code.

Keywords: type soundness · smart contracts · address type

1 Introduction

Over the last few years the execution of smart contracts on the blockchain has
emerged as a form of distributed programming of a global computer. Anyone can
deploy a global service, encoded as a smart contract, that can be used by mu-
tually untrusted parties to “safely” interact with no need of a central authority.
Therefore it is of paramount importance that the intended interaction provided
by the service is “correctly” implemented by the code of the corresponding con-
tract. Indeed, while the term contract is generally used to refer to an interaction
that is intended to be enforced by law, a smart contract on the blockchain is
intended to be automatically enforced : the law is embodied by the code to be
executed (see the TheDAO a↵air [1]).

Formal methods have a long tradition of successes in dealing with the subtle
mismatches between program specification and code implementation, and they
can be helpful also in the new context of smart contracts. Here we focus on
Solidity, the most widely used programming language in Ethereum’s ecosystem,
and on formal methods that provide support for a safer programming discipline
by acting directly at the programming language level. In particular, since Solid-
ity is a statically typed language, we foster the use of types as a tool to shape
and substantiate the programmer’s reasoning. However, static typing conveys an
e↵ective programming discipline only if type constraints are actually enforced
by the compiler. In other terms, there is a gap between the definition of types
in a language and their type-safe usage. We show below that this is precisely
the case of the last release of Solidity 0.5. Indeed, the newly-introduced type
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address payable is intended to prevent Ether transfers to smart contracts that
are not supposed to receive money, but the compiler fails to enforce such seman-
tics. In other words, the type soundness of Solidity 0.5 is no better than that of
the previous release.

Formal methods and the theory of typed languages show the way to bridge
that gap and develop a statically typed language that is also type-safe. In partic-
ular, since Solidity contracts are reminiscent of class-based objects in distributed
Object-Oriented Languages, it is worth to study how the rich and well-known
theory of OOLs can be reused and adapted to smart contracts programming.

In a previous work we defined the Featherweight Solidity typed calculus ([3]),
which formalizes the core of the Solidity language and the basic type soundness
provided by its compiler (both versions 0.4 and 0.5). In that work we also pro-
posed a refined typing that enjoys a stronger soundness property, but remains
retro-compatible with legacy Solidity code. That typing ensures safer accesses
to contracts through their address; hence it statically prevents a general class
of runtime errors. We show here that the unsafe usage of the address payable
type can be statically captured by the refined type system put forward in [3].
Therefore, it represents a solution to the soundness issue of Solidity 0.5 and
supports an e↵ective smart contract programming discipline using the compiler
as a convenient building tool.

2 The problem

As in class-based Object-Oriented Languages, the declaration of a Solidity con-
tract C defines a contract type C. However, instances of such a contract are often
referred to by the Solidity code through expressions of type address, that es-
sentially represent an untyped way to access them. Such expressions must then
be cast to the type C in order to call the functions provided by the contract
C. Casting an untyped pointer is notoriously a very flexible but subtle feature
requiring programmers to precisely know what pointers refer to. Solidity’s com-
piler provides no help here: neither static or dynamic checks are performed on
cast expressions, and a dynamic error is raised only when calling a function (or
accessing a state variable) that is not provided by the underlying contract.

Two features of Solidity make this problem pervasive in the code of smart con-
tracts. First of all, in Ethereum the instances of smart contracts deployed on the
blockchain can only be accessed through their public address. Secondly, contract
functions make extensive use of their implicit variables this and msg.sender,
that are dynamically bound to the contract instance being executed and the
address of the caller contract, respectively. Therefore, while the callee is re-
ferred to through a typed pointer (as in OOLs), the caller is referred to through
an untyped one. Hence, even though usual method recursion is type-safe, all
the callback expressions undergo potentially unsafe usages. Indeed, besides the
dangerous casts described above, a typical Solidity pattern consists in calling
msg.sender.transfer(n) to send n Ether from the balance of the callee to that
of the caller. However, such a transfer implicitly calls the fallback function of the
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contract referred to by msg.sender, thus raising a dynamic error if such function
has not been defined by that contract.

To mitigate this problem, the last release of Solidity (i.e. version 0.5 [2])
distinguishes two types, address and address payable, where the second one
denotes addresses pointing to contracts that declare the fallback function. Ide-
ally, by using the new type address payable, Solidity 0.5 intends to statically
prevent at least the unsafe money transfers, that are actually the most common
form of the dynamic errors described above. It is worth to observe that these er-
rors, that in OOLs are known as message-not-understood, are particularly harm-
ful in the context of the blockchain. Indeed, in Ethereum the occurrence of a
dynamic error causes the initial transaction to be interrupted and rolled-back
(the so-called revert). This makes the account that issued that transaction lose
the money it paid to the miner node and possibly leads to Ether indefinitely
locked into a contract’s balance. Hence, there is a pressing requirement to issue
a transaction only if it can be statically guaranteed that it will not evolve to a
revert.

Unfortunately, Solidity 0.5 fails to prevent unsafe money transfers at compile-
time. As a matter of fact, no type check is enforced by the compiler to ensure
that a variable of type address payable is substituted with the address of a
contract that actually provides a fallback function. The problem can be detected
with a careful read of the documentation1, which states:

It might very well be that you do not need to care about the distinction
between address and address payable and just use address everywhere.
For example, if you use the withdraw pattern you most likely do not have
to change your code because transfer is only used on msg.sender instead
of stored addresses and msg.sender is an address payable.
[...] Address literals can be implicitly converted to address payable.
[...] In external function signatures address is used for both the address
and the address payable type.

Concretely, the counterexample in Figure 1 shows that the implicit vari-
able msg.sender is assumed to be of type address payable, but no check is
performed on the type of the actual caller’s address. More precisely, the expres-
sion msg.sender.transfer(10) in the body of the function of the contract Test
(line 26) correctly compiles, and so does the call of this function from the con-
tract WithoutFallback (line 11). However, issuing a transaction that invokes the
function callUnsafeContract of WithoutFallback results in a revert as that
contract cannot receive money back from the contract Test. The same problem
occurs if the functions are marked public or private instead of external. Further-
more, in order for the contract WithoutFallback to refer to a deployed instance
of the contract Test, its constructor can only accept a parameter of address type
and then cast it to the expected contract type (line 7). Even if nothing ensures
that the actual parameter refers to an instance of Test, the cast expression
correctly compiles and correctly executes, postponing the dynamic check to the

1 https://solidity.readthedocs.io/en/v0.5.9/050-breaking-changes.html
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1 pragma solidity >=0.5.0 <0.7.0;

2

3 contract WithoutFallback {

4 Test _test;

5

6 constructor (address _unsafeAddress) payable public {

7 _test = Test(_unsafeAddress);

8 }

9

10 function callUnsafeContract () external {

11 _test.foo();

12 }

13

14 function testUnsafeCast () external {

15 address _addr = address(_test);

16 // _addr.transfer (10); // DOES NOT COMPILE

17 address payable _payAddr = address(uint160(_addr));

18 _payAddr.transfer (10);

19 }

20 }

21

22 contract Test {

23 constructor () payable public {}

24

25 function foo() external {

26 msg.sender.transfer (10);

27 }

28 }

Fig. 1. Counterexample to the type safety of Solidity 0.5

moment where the test reference is actually used (line 11). The constructor’s
parameter unsafeAddress could also be of type address payable. In this case,
one might expect the compiler to check that, when casting a payable address to
a contract type, the target type of the cast (i.e. Test) at least defines a fallback
function. Again, this is not true. No check is performed, either at compile-time or
at run-time, to ensure that Test respects the constraints that address payable
is supposed to impose.

The example also shows (in function testUnsafeCast) that the transfer
primitive can be correctly used only on addresses of static type address payable,
but the type constraint can be circumvented by resorting to an intermediate cast
to the type uint160, as explicitly stated by the o�cial documentation. Clearly,
the expression payAddr.transfer(10) at line 18 dynamically raises an error
since there is no fallback function in the Test contract.

We tested the code in Figure 1 with Remix, the online Ethereum IDE, using
the version 0.5.9+commit.e560f70d of the Solidity compiler.
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Money transfers that dynamically lead to errors were possible since the first
release of Solidity, so the new version has not introduced a new problem. On the
other hand, the addition of the new type address payable to capture the (ad-
dresses of) contracts that can “safely” receive Ether, generates into programmers
the expectation that “safely” means type-safely, that is the compiler will check
it. In fact nothing has actually changed w.r.t. version 0.4: the new type essen-
tially provides only a refined documentation about addresses, but programmers
have certainly more confounded expectations.

3 The solution

The typed theory of programming languages allows to identify a type preserva-
tion issue in Solidity 0.5’s type system, confirmed by the code in Figure 1, and
also o↵ers a solution. In a previous work ([3]) we developed a precise formaliza-
tion of the core of the Solidity language and its type system. We resorted to a
formalization style that is reminiscent of the well known Featherweight Java lan-
guage [4], highlighting the similarities between the notions of object and smart
contract. Along with a precise definition of the basic type-soundness provided by
the Solidity compiler, we proposed a refined type system that enjoys a stronger
soundness property. In particular, that typing solves the type preservation prob-
lem pointed out here. Furthermore, the solution put forward in [3] is general
enough to statically prevent not just unsafe calls to a non existent fallback func-
tion, but all the message-not-understood errors arising from unsafe casts from
addresses to contract types.

The key idea is twofold. First, the type address is refined with type infor-
mation about the contract it refers to. That is, addresshCi is the type of the
addresses of instances of the contract C, or of a contract that inherits form C.
In particular, assuming a dummy contract Topfb that only contains a fallback
function with an empty body, the type addresshTopfbi has the same meaning of
Solidity 0.5’s address payable. Indeed, it is the (super-)type of the addresses
of every contract that can safely accept money transfers.2

The second idea is to enrich functions’ signatures with the maximum type
allowed for the caller, so that functions can only be invoked by contracts with
an expected (super-)type. Adding a type constraint for the caller in function
signatures is essential to safely type the implicit msg.sender parameter, thus to
guarantee type preservation. The compiler can then statically check potentially
unsafe callback expressions, such as msg.sender.transfer(n) or
C(msg.sender).foo(), that reduce to a revert if msg.sender is bound to the
address of a contract that has no fallback function or does not have type C,
respectively.

The counterexample in Figure 1 can be fixed by choosing a suitable refined
signature for the foo function of the contract Test. As the only requirement for

2 In [3] we proposed the keyword payableaddress as a syntactic sugar for the type
addresshTopfbi, since at the time of writing we were not aware of Solidity 0.5.
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the caller is to provide a fallback function, it is su�cient to amend the function’s
code as follows:

function foo() <Topfb> external {

msg.sender.transfer (10);

}

In the body of the function, the variable msg.sender is then assumed to have
type addresshTopfbi, hence the call to transfer is now well typed. On the other
hand, the compiler prevents the unsafe money transfer by identifying a type error
in the function call at line 11, since the caller’s type, WithoutFallback, is not
a subtype of Topfb. As a further example, the following function, whose refined
signature specifies the expected (super-)type of the caller, could be safely added
to the Test contract:

function boo() <WithoutFallback > external {

WithoutFallback(msg.sender).testUnsafeCast ();

}

To simplify the notation, and in line with the Solidity programming style, in [3]
we proposed a syntactic sugar based on a new function marker, payback, for
functions whose caller must simply provide a fallback function (which is the
most common case). In this way the foo function inside the Test contract would
simply become as follows:

function foo() payback external {

msg.sender.transfer (10);

}

Similarly, the standard function signature with no annotation could correspond
to assuming the (super-)type addresshTopi, that is no constraint for the caller.

Further details about the formalization of this idea, its type-soundness, and
its retro-compatibility with Solidity contracts already deployed on the blockchain
can be found in [3]. We just observe here that, despite the usage of the convenient
payback marker, to take advantage of the full power of the refined typing the
major e↵ort required to Solidity programmers is to annotate their functions with
the required (super-)type of the caller. Such a requirement might be verbose,
but it actually supports a safer programming discipline, where types mirror the
programmer’s reasoning and the compiler can be e↵ectively used as a convenient
building tool.
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Towards a Smart Contract Verification Framework in Coq ⇤
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Abstract

We propose a novel way of embedding functional smart contract languages into the Coq proof

assistant using meta-programming techniques. Our framework allows for developing the meta-theory of

smart contract languages using the deep embedding and provides a convenient way for reasoning about

concrete contracts using the shallow embedding. The proposed approach allows to make a connection

between the two embeddings in a form of a soundness theorem. As an instance of our approach

we develop an embedding of the Oak smart contract language in Coq and verify several important

properties of a crowdfunding contract. The developed techniques are applicable to all functional smart

contract languages.

1 Introduction

The concept of blockchain-based smart contracts has evolved in several ways since its appear-
ance. Starting from the restricted and non Turing complete Bitcoin script1 designed to validate
transactions, the idea of smart contracts expanded to fully featured languages like Solidity
running on the Ethereum Virtual Machine (EVM).2 Recent research on the smart contract
verification discovered the presence of multiple vulnerabilities in many smart contract written
in Solidity [3, 6]. Several times the issues in smart contract implementations resulted in huge
financial losses (for example, the DAO contract and the Parity multi-sig wallet on Ethereum).
The setup for smart contracts is quite unique: once deployed, they cannot be changed and
any small mistake in the contract logic may lead to serious financial consequences. This shows
not only the importance of formal verification of smart contracts, but also the importance of
principled programming language design. Next generation smart contract languages tends to
employ the functional programming paradigm. A number of blockchain implementations have
already adopted certain variations of functional languages as an underlying smart contract
language. These languages range from minimalistic and low-level (Simplicity [5], Michelson3)
to fully-featured OCaml- and Haskell-like languages (Liquidity [2], Plutus4). There is a very
good reason for this tendency. Statically typed functional programming languages can rule out
many mistakes. Moreover, due to the absence (or more precise control) of side e↵ects programs
in functional languages behave as mathematical functions that makes reasoning about them
easier. However, one cannot hope to perform only stateless computations: the state is inherent
for blockchains. One way to approach this is to limit the ways of changing the state. While
Solidity allows arbitrary state modifications at any point of execution, many modern smart
contract languages represent smart contract execution as a function from a current state to a
new state. This functional nature of modern smart contract languages makes them well-suited
for formal reasoning.

⇤
This work is supported by the Concordium Blockchain Research Center, Aarhus University, Denmark.

1
Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf

2
Ethereum’s white paper: https://github.com/ethereum/wiki/wiki/White-Paper

3 https://www.michelson-lang.com/
4 https://cardanodocs.com/technical/plutus/introduction/
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The Ethereum Virtual Machine and the Solidity smart contract language remains one of the
most used platforms for writing smart contacts. Due to the permissiveness of the underlying
execution model and complexity of the language verification in this setting is quite challenging.
On the other hand, many new generation languages such as Oak,5 Liquidity and Scilla, o↵er a
di↵erent execution model and a type system allowing to rule out many errors by means of type
checking. Of course, many important properties are not possible to capture even with powerful
type systems of functional smart contract languages. For that reason, to provide even higher
guarantees, such as functional correctness, one has to resort to stronger type systems/logics for
reasoning about programs and employ deductive verification techniques. Among various tools
for that purpose proof assistants provide a versatile solution for that problem.

Proof assistants, or interactive theorem provers are tools that allow for stating and proving
theorems by interacting with users. Proof assistants often o↵er some degree of proof automation
by implementing decision and semi-decision procedures, or interacting with automated theorem
provers (SAT and SMT solvers). Some proof assistants allow for writing user-defined automa-
tion scripts, or write extensions using a plug-in system. This is especially important, since
many problems in the verification of programming languages are undecidable and providing
users with a convenient way of interactive proving while retaining a possibility to do automatic
reasoning makes proof assistants very flexible tools for verification of smart contracts.

Existing formalisations of functional smart contract languages in proof assistants focus either
on meta-theory6 or on verification of particular smart contracts translated by hand to Coq [7].
None of these developments combine deep and shallow embeddings in one framework or provide
an automatic way of converting smart contracts to Coq programs. We are making a step towards
this direction by allowing for deep and shallow embeddings to coexist and interact in Coq.

The contributions of this paper are the following: (1) we develop an approach allowing
for developing in one framework the meta-theory of smart contract languages and convenient
reasoning about concrete contracts; (2) we combine deep and shallow embedings using the
metaprogramming facilities of the MetaCoq plug-in [1]; (3) as an instance of our approach
we define the syntax and semantics of the Oak language (the deep embedding) and the cor-
responding translation of Oak programs into Coq functions (the shallow embedding); (4) we
prove properties of a crowdfunding contract given as a deep embedding (abstract syntax tree)
of an Oak program. We discuss details of our approach in Section 2 and provide an example of
a crowdfunding contract in Section 3.

2 Our approach

There are various ways of reasoning about properties of a functional programming language in
a proof assistant. First, let us split the properties in two groups: meta-theoretical properties
(properties of a language itself) and properties of programs written in the language. Since
we are focused on functional smart contract languages and many proof assistants come with
a built-in functional language, it is reasonable to assume that we can reuse the programming
language of a proof assistant to express smart contracts and reason about their properties. A
somewhat similar approach is taken by the authors of the hs-to-coq library [8], which translates
total Haskell programs to Coq by means of source-to-source transformation. Unfortunately, in

5
The Oak language is an ML-style functional smart contract language with Elm-like syntax. Oak is currently

under development at the Concordium foundation.
6

Michelson meta-theory: https://gitlab.com/nomadic-labs/mi-cho-coq/
Plutus core meta-theory: https://github.com/input-output-hk/plutus/tree/master/metatheory
Simplicity meta-theory: https://github.com/ElementsProject/simplicity/tree/master/Coq.

2
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Figure 1: The structure of the framework

this case it is impossible to reason about the correctness of the translation.
We would like to have two representations of functional programs within the same frame-

work: a deep embedding in the form of an abstract syntax tree (AST), and a shallow embedding
as a Coq function. While the deep embedding is suitable for meta-theoretical reasoning, the
shallow embedding is convenient for proving properties of concrete programs. We use the meta-
programming facilities of the MetaCoq plug-in [1] to connect the two ways of reasoning about
functional programs.

The overview of the structure of the framework is given in Figure 1. As opposed to source-
to-source translations in the style hs-to-coq[8] and coq-of-ocaml7 we would like for all the
non-trivial transformations to happen in Coq. This makes it possible to reason within Coq
about the translation and formalize the required meta-theory for the language. That is, we
start with an AST of a program in a smart contract language implemented in Haskell, OCaml
or some other language, then we generate an AST represented using the constructors of the
corresponding inductive type in Coq (deep embedding) by printing the desugared AST of the
program. By printing we mean a recursive procedure of converting the AST into a string
consisting of the constructors of our Coq representation. The main idea is that this procedure
should be as simple as possible and does not involve any non-trivial manipulations, since it will
be a part of a trusted code base. If any non-trivial transformations are required, they should
happen within the Coq implementation.

MetaCoq allows us to convert an AST represented as an inductive type into a Coq term.
Thus, starting with the syntax of a program in our functional language, through a series of
transformations we produce a MetaCoq AST, which is then interpreted into a program in
Coq’s Gallina language (shallow embedding). The transformations include conversion from the
named to the nameless representation (if required) and translation into the MetaCoq AST. The
deep embedding also serves as input for developing meta-theory of the smart contract language.

As an instance of our approach we develop an embedding of the Oak smart contract lan-
guage to Coq.8 The semantics of Oak is given as a definitional interpreter. This gives us
an executable semantics for the language. The interpreter is implemented in an environment-
passing style and works both with named and nameless representations of variables. To be able
to interpret general fixpoints we evaluate fixpoints applications in the environment extended
with the closure corresponding to the recursive call. Due to the potential non-termination, we
define our interpreter using a fuel idiom: by structural recursion on an additional argument (a
natural number).

Since the development of the meta-theory of Coq itself is one of the aims of the MetaCoq we
can use this development to show that the semantics of our functional language agrees with its

7
The coq-of-ocaml github page: https://github.com/clarus/coq-of-ocaml

8
Our Coq development https://github.com/annenkov/FMBC19-artefact/, including examples from Section 3

3
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(* Defining AST using customised notations *)

(* Brackets [\ \] delimit the scope of global *)
(* definitions and [| |] the scope of programs *)

Definition state_syn : global_dec :=
[\ record State :=

{ balance : Money ;
donations : Map ;
owner : Money ;
deadline : Nat ;
goal : Money } \].

Make Inductive (trans_global_dec state_syn ).

Definition action_syn : global_dec :=
[\ data Action :=

Transfer : Address ! Money ! Action
| Empty : Action ; \].

Make Inductive (trans_global_dec action_syn ).

Definition result_syn : global_dec :=
[\ data Result :=

Res : State ! Action ! Result
| Error : Result ; \].

Make Inductive (trans_global_dec result_syn ).

Definition msg_syn : global_dec :=
[\ data Msg :=

Donate : Msg
| GetFunds : Msg
| Claim : Msg ; \].

Make Inductive (trans_global_dec msg_syn ).

Definition crowdfunding : expr :=
[| \c : Ctx ) \s : State ) \m : Msg )

let bal : Money := balance s in
let now : Nat := cur_time c in
let tx_amount : Money := amount c in
let sender : Address := ctx_from c in
let own : Address := owner s in
let accs : Map := donations s in
case m : Msg return Result of
| GetFunds !

if (own == sender) && (deadline s < now)
&& (goal s bal ) then

Res (mkState 0 accs own (deadline s) (goal s))
(Transfer bal sender )

else Error : Result
| Donate ! if now deadline s then

(case (mfind accs sender ) : Maybe return Result of
| Just v !
let newmap : Map :=

madd sender (v + tx_amount ) accs in
Res (mkState (tx_amount + bal) newmap own

(deadline s) (goal s)) Empty
| Nothing !

let newmap : Map := madd sender tx_amount accs in
Res (mkState (tx_amount + bal) newmap own

(deadline s) (goal s)) Empty )
else Error : Result

| Claim ! if (deadline s < now) && (bal < goal s) then
(case (mfind accs sender ) : Maybe return Result of
| Just v ! let newmap : Map := madd sender 0 accs in

Res (mkState (bal�v) newmap own (deadline s)
(goal s)) (Transfer v sender )

| Nothing ! Error)
else Error : Result |].

Make Definition entry :=
Eval compute in (expr_to_term (indexify crowdfunding )).

Figure 2: The crowdfunding contract

translation to MetaCoq (on terminating programs) and our interpreter is sound with respect to
the embedding. We compare the results of evaluation of Oak expressions with the weak head
call-by-value evaluation relation of MetaCoq up to appropriate conversion of values. Currently,
the full formalisation of this proof is under development. Being able to relate the semantics of
Oak to the semantics of Coq through Coq’s meta-theory formalisation gives stronger guarantees
that our shallow embedding reflects the actual behaviour of Oak programs. The described
approach provides a more principled way of embedding functional language, in contrast to the
source-to-source based approaches.

3 The crowdfunding contract

As an example of our approach we consider verification of some properties of a crowdfunding
contract (Figure 2). Such a contract allows arbitrary users to donate money within a deadline.
If the crowdfunding goal is reached, the owner can withdraw the total amount from the account
after the deadline has passed. Also, users can withdraw their donations after the deadline if
the goal has not been reached. This is a standard example of a contract and it appears in a
number of publications related to smart contract verification.

We extensively use a new feature of Coq called “custom entries” to provide a convenient
notation for our deep embedding.9 The program texts in Figure 2 written inside the special
brackets [\ ... \] and [| ... |] are parsed according to the custom notation rules. For example,
without using notations the definition of action_syn looks as follows:

gdInd Action 0 [("Transfer", [(nAnon, tyInd "nat"); (nAnon, tyInd "nat")]);("Empty", [])] false.

This AST otherwise would be printed directly from the smart contract AST by a simple pro-
cedure (as we outlined in Section 2). We start with defining the required data structures such

9
Custom entries are available in Coq 8.10
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as State, Action, Result and Msg meaning contract state, resulting contract actions, the type
of results (equivalent to the option type of Coq) and messages accepted by this contract. We
pre-generate string constants for corresponding names of inductive types, constructors, etc.
using the MetaCoq template monad.10 This allows for more readable presentation using our
notation mechanism. Currently, we use the nat type of Coq to represent account addresses and
currency. Eventually, these types will be replaced with corresponding formalisations of these
primitive types.

The trans_global_dec : global_dec ! mutual_inductive_entry function takes the syntax of
the data type declarations and produces an element of mutual_inductive_entry — a MetaCoq
representation for inductive types. For each of our deeply embedded data type definitions we
produce corresponding definitions of inductive types in Coq by using the Make Inductive com-
mand of MetaCoq that “unquotes” given instances of the mutual_inductive_entry type. Similar
notation mechanism is used to write programs using the deep embedding. The definition of
crowdfunding represents a syntax of the crowdfunding contract. We translate the crowdfund-
ing contract’s AST into a MetaCoq AST using the expr_to_term : global_env ! expr ! term

function. Here, global_env is a global environment containing declarations of inductive types
used in the function definition, expr is a type of Oak expressions, and term is a type of
MetaCoq terms. Before translating the Oak AST we apply the indexify function that con-
verts named variables into De Bruijn indices. The result of these transformations is un-
quoted with the Make Definition command. The corresponding function has the following
type entry : ctx ! State_coq ! Msg_coq ! Result_coq, where ctx is a call context containing
current block time, transferred amount, sender’s address and other information available for
inspection during the contract call. The type names with the “coq” postfix correspond to the
unquoted data types from the Figure 2.

The entry function corresponds to a transition from the current state of the contract to
the new state. That allows for proving functional correctness properties using pre- and post-
conditions. Similarly to [7], we a prove number of properties of the contract using the shallow
embedding. Specifically, we proved the following properties: the contract does no leak funds;
the donations can be paid back to the backers if the goal is not reached within a deadline;
donations are recorded correctly in the contract’s state. Moreover, in our Coq development,
we show how one can verify library code for Oak by proving Oak functions equivalent to the
corresponding functions from the standard library of Coq. In particular, we provide an example
of such a procedure for certain functions on finite maps.

4 Related work

In this work we focus on modern smart contract languages based on a functional programming
paradigm. In many cases various small errors in smart contracts can be ruled out by the type
systems of these languages. Capturing more serious errors requires employing such techniques
as deductive verification (for verification of concrete contracts) and formalisation of meta-theory
(to ensure soundness of type systems). Works related to formalisation of such languages are
mentioned in Section 1 and include languages like Plutus, Michelson, Liquidity, Scilla and
Simplicity.

10
The template monad is a part of the MetaCoq infrastructure. It allows for interacting with Coq’s global

environment: reading data about existing definitions, adding new definitions, quoting/unquoting definitions,

etc.
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5 Conclusion and future work

We have presented a work-in-progress on the smart contract verification framework. An impor-
tant feature of our approach is the ability to both develop a meta-theory of a smart contract
language and to conveniently reason about smart contracts. One can prove soundness theorems
relating meta-theory of the smart contract language with the embedding. Such an option is usu-
ally not available for source-to-source translations. We applied our approach to the development
of an embedding of the Oak smart contract language and provided an example of verification
of a crowdfunding contract starting from the contract’s AST. However, the approach is quite
general and applies to other functional smart contract languages.

As future work, we would like to provide integration with Oak-language infrastructure allow-
ing for a convenient translation of Oak programs to Coq. Since our framework is not focused
on one particular smart contract language, we also consider benchmarking our development
by developing “backends” for translation of other languages (e.g. Liquidity, Simplicity). Cur-
rently, our framework allows for proving functional correctness of contracts corresponding to
one “step” from the current state to the new state. To be able to reason about the chain
of contract calls one needs an execution model to be formalised in Coq as well. We plan to
connect our development to the ongoing work on formalising such and execution model for the
Oak programming language[4].

Extending the formalisation of the Oak language meta-theory is also among our goals for the
framework. An important bit of Oak’s meta-theory is the cost semantics allowing for reasoning
about “gas”. We would like to give a cost semantics for the deep embedding and explore how
it can be extended on the shallow embedding.
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