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1 Preliminaries and Objectives

Our need for trust and reliance on correctly operating computer systems and programs is rapidly in-
creasing. Such systems are often found in critical environments, where an error can lead to serious
damage (e.g. industrial controllers) or financial consequences (e.g. asset management). While there
is a wide variety of verification methods ranging from simple compiler checks to testing and run-
time monitoring, formal techniques are also gaining traction in critical domains. Formal verification
techniques have a sound mathematical basis and can both show the presence or prove the absence
of certain kinds of errors. Rigorous reasoning about the operation of a computer system or program
traces back several decades to seminal works of McCarty [McC62], Floyd [Flo67], Hoare [Hoa69] and
Dijkstra [Dij76]. Despite early results proving that most of the interesting problems (e.g. termination)
are theoretically undecidable [Tur36; Chu36; Ric53], there has been a great interest in developing
approaches that can be effectively applied for practical cases.

Automated formal verification gained a boost when model checking [Cla+18] was introduced,
which examines whether a formal model (representation) of the system meets a formally specified
property by analyzing all possible states and transitions (i.e. the state space) of the model. In this dis-
sertation we are addressing discrete systems, where the behavior of the system can be expressed in
terms of discrete states and transitions. Early works explicitly enumerated the state space [CE82;
QS82], which rarely scaled to programs and systems of practical size. Nevertheless, the promise of
formal correctness guarantees has spawned a great interest and a wide variety of approaches have
been developed, including symbolic methods [Bur+90], partial order reduction techniques [Val91;
God91; Pel93], bounded model checking [Bie+99], abstraction [CGL94; Cla+03] and modular veri-
fication [Mul02]. However, despite the advances, there are open questions that have not yet been
addressed to a full extent and each new application or problem domain spawns new challenges. This
dissertation targets such challenges in order to make verification more effective.

1.1 Properties and Challenges

From the theoretical point of view, two widely studied properties of formal verification are soundness
and completeness [JM09; Bey12; Mey19] as illustrated in Figure 1. A system or program might behave
desirably (with respect to a property) or might have violating behaviors. When formal verification is
applied, it can either result in a pass (property holds) or a reject (property is violated).

Soundness. An analysis is called sound if it does not miss any violations to the property. Missed vio-
lations (also called false negatives) are critical because they lead to a misbelief of a correctly operating
system.

Completeness. Analogously, an analysis is called complete if it only reports real violations of the
property. In most cases, a reported violation (error) is accompanied by a trace leading to the error that
can be reproduced in the original system. Therefore, false alarms (non-real errors) can be ruled out
by simulating the reported trace on the original system. This usually requires manual effort, so an
overwhelming amount of false alarms can make the approach less appealing in practice.

In the current work, we are not considering soundness and completeness explicitly. The algorithms
and background logics have a sound mathematical basis and have been used in various contexts; many
of them also having formal proofs. Unsound and incomplete behavior is often introduced while trans-
lating the high-level model to the mathematical formalism, but translation validation is a research area
on its own and is out of scope for this work. We raise our confidence in soundness and completeness
by evaluating our approaches on various real-life examples and standard benchmarks.
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Formal verification
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Figure 1. llustration of the possible outcomes of verification compared to the real behavior [Mey19].
A sound analysis should not miss violations, while a complete one must not report false alarms.

Soundness and completeness are essential properties, but they only apply if verification terminates
with a conclusive answer. In practical settings, usually, a broader set of properties and challenges
must be considered (Figure 2), such as the expressive power and efficiency of an approach and the set
of problems on which it can terminate with a conclusive answer.

’ Model and property space

Expressive power ’ Supported by verification Unsupported
Efficiency ’ Terminate with answer ‘ Resource n;ﬁgglelrrlltg
limits
Conclusive answers ’ Conclusive ‘ ’ Inconclusive ‘ reached or property

Figure 2. Possible outcomes of verification in practice. When verification cannot give a conclusive
answer, it can terminate inconclusively, reach its resource limits or encounter an unsupported feature.

Expressive power. Engineers and programmers usually describe their systems and programs in
some high-level modeling or programming language. High-level system models and properties are
translated through a series of transformations to low-level mathematical formalisms (e.g. automata)
and properties (e.g. temporal logic) on which verification algorithms operate. The expressive power of
a verification approach is determined by the supported modeling formalism and property. Note that
the expressive power of the low-level formalism and property also determines the set of high-level
modeling elements and specification constructs that can be used. For example, to verify a protocol with
unbounded communication channels, the algorithm should be able to handle infinite state spaces.

Efficiency. In practical applications, formal verification is limited by various resources such as CPU
time or memory consumption. In the context of this dissertation, we consider a formal verification
approach efficient if it allows scalable reasoning on systems of practical size and complexity. It is
hard to define what “scalable” means explicitly because it also depends on the application domain. An
interactive verifier built into an IDE should not take longer than a few seconds. Verification integrated
into CI environments can run up to a few minutes [Cal+15; Cho+20]. Competitions [Bey17; Cab+16;
Amp+19] usually allow larger execution times (15-60 minutes), and in some domains, it might also
be acceptable to run analyses overnight for multiple hours.!

Conclusive answers. Algorithms might also encounter some undecidable case or unsupported sub-
class where they stop and report an inconclusive answer. This can happen, for example, when an ap-
proach over- or under-approximates the state space and can only prove or falsify the property but not
both. A typical example is bounded model checking [Bie+99], which terminates with an inconclusive

'Based on personal communication with Daniel Darvas, the developer of a PLC verification tool [DFB15] at CERN.
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result if the bound is reached without finding a violation. Terminating with an inconclusive result is
better than exhausting resources or reporting a wrong answer, but ideally, the number of such cases
should also be minimized.

Trade-offs. It is hard (or sometimes even theoretically impossible) to achieve all the above prop-
erties to a full extent in a general setting [JM09]. For example, lifting the expressive power of the
algorithm might make the problem theoretically undecidable, and thus the algorithm cannot be con-
clusive for all cases. Also, efficient reasoning often involves abstractions, which can introduce falsely
reported errors, i.e. incompleteness.

Challenges. In this dissertation, we focus on the following three challenges.
1. Expressive power: How can we support expressing and checking high-level modeling formalisms
and functional properties?
2. Efficiency: How can we increase the efficiency of an approach to be able to terminate for a
broader set of system models and programs of practical size?
3. Conclusive answers: How can we increase the set of problems where verification terminates with
a conclusive answer?

Objective. The objective of the dissertation is to achieve a trade-off that is effective in practice by
balancing the focus between the challenges in the different problem domains.

1.2 Overview

In this dissertation, we target effective verification in three different problem domains using different
modeling formalisms and verification approaches:

1. concurrent and asynchronous systems (Thesis 1),

2. embedded software code (Thesis 2) and

3. blockchain-based decentralized systems (Thesis 3).
An overview of the contributions can be seen in Figure 3. Systems and programs in each domain are
usually designed or written in some higher level language that is suitable for engineers and develop-
ers. This representation is first translated into a formal model and a property. A verification algorithm
then checks whether the model satisfies the property by systematically exploring its behavior. Dur-
ing this process, the algorithm translates the validity of the property into formulas and equations,
called verification conditions (VCs), and relies on some background logic to solve them. A filled back-
ground highlights my own contributions, with the corresponding subtheses numbered in ellipses (also
referenced later in the text). As discussed previously, each domain puts more emphasis on different
challenges. These challenges — namely expressive power, efficiency, and conclusive answers — are
summarized in Figure 4.

1.3 Concurrent and Asynchronous Systems

Concurrent systems consist of multiple components interacting together, often in an asynchronous
way, to achieve some common goal. Some examples include mutual exclusion protocols, scheduling
processes, and manufacturing systems. The main focus of verification, in this case, is usually on the
communication, the interactions, and the protocols between the participants. However, due to the high
number of possible interleavings between the individual executions, the state space of these systems
can often grow at an exponential (or even higher) rate with the number of participants. Furthermore,
unbounded protocols can even yield an infinite state space.

Petri nets [Mur89] offer a compact representation, providing both structural and dynamical anal-
ysis. A Petri net is a directed bipartite graph with places and transitions. Places are marked with a
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Figure 3. Overview of the problem domains and the verification approaches used in each thesis. Own
contributions are denoted with a filled background.

Thesis 1 Thesis 2 Thesis 3
Expressive power Ao a2 GDGD
Efficiency eDeE2Ed G>

Conclusive answers @3

Figure 4. Overview of the challenges addressed by each thesis.

number of tokens, describing the current state of the modeled system. Transitions change the dis-
tribution of tokens (i.e. the marking) by removing and producing tokens in connected places. Many
interesting properties can be formulated by the so-called reachability problem [Mur89], i.e. deciding if
a given state (marking) is reachable from the initial state of the net. Reachability is decidable [May81;
Kos82], but has at least a non-elementary complexity [Cze+19].

There has been an extensive body of work on efficient approaches for solving Petri net reach-
ability [Amp+19]. One appealing algorithm [WW11] uses the state equation of Petri nets to over-
approximate the reachability problem. The state equation is a structural analysis technique based on
integer linear programming (ILP) [Sch86]. A notable feature of the state equation is that — as a struc-
tural technique - it is independent of the size of the state space. Thus, it is capable of handling very
large or even infinite state spaces efficiently. However, the feasibility of the state equation is only a
necessary, but not a sufficient condition for reachability. Therefore, if there is no solution to the state
equation, the target state is not reachable. Otherwise, the solution must be checked (simulated) in the
Petri net for feasibility. In the case of an infeasible solution, the state equation is extended with ad-
ditional constraints to become a more precise over-approximation and to obtain a different solution.
The process is repeated until the state equation becomes infeasible, or a feasible solution is found.
This can also be seen as an application of the so-called counterexample-guided abstraction refinement
(CEGAR) approach [Cla+03] to Petri nets.

Thesis 1 objectives. While the algorithm has proven its efficiency at the Model Checking Con-
test [Kor+12], its expressive power was limited to basic Petri net reachability, and no discussion
was available on the problems on which it gives a conclusive answer. The main objectives of this
research are to examine the problems on which the algorithm gives a conclusive answer and to lift
its expressive power to extended Petri nets and more general properties.
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1.4 Embedded Software Code

Safety critical software usually operates in embedded systems or controllers. Such programs are of-
ten written in C or a similar lower level language with a restricted set of elements and constructs.
Some examples include industrial controller codes and event-driven systems. A widely used formal
representation for such programs is the control-flow automaton (CFA) [BHT07]. A CFA is a graph-
based formalism where nodes correspond to program locations and edges capture control-flow with
operations over the program variables. Many interesting properties can be formalized by checking if a
distinguished error location can be reached in the CFA. Examples include failing assertions, indexing
out-of-bounds, division by zero, and so on [Bey15].

However, a significant challenge in software model checking is the large state space implied by
data variables with rich domains (e.g. integers and arrays). This issue is often addressed by abstrac-
tion. Counterexample-guided abstraction refinement (CEGAR) [Cla+03] is an automated verification ap-
proach that works by iteratively constructing and refining abstractions for the system. Many variants
of CEGAR have been developed over the years as different strategies are more suitable for different
kinds of programs. A generic CEGAR approach consists of two main parts [j3]. First, the abstraction
phase builds an abstract reachability graph (ARG) using an initial (usually coarse) precision. The ARG
represents the abstract state space under some abstract domain, such as explicit values [BL13] or pred-
icates [GS97]. Explicit values only track a subset of the system variables, whereas predicates keep
track of different facts and relationships between the variables using logical formulas. The ARG is an
over-approximation of the original state space, therefore if the error location cannot be reached, the
original system is also correct. Otherwise, an abstract counterexample (a trace leading to the error
location) exists. The refinement phase starts by checking the feasibility of this counterexample in the
original system. If it is feasible, the system is incorrect. Otherwise, the precision of the abstraction is
refined by inferring new variables or facts to be tracked [j3], and the ARG is pruned to exclude the
spurious counterexample. In the next iteration, abstraction can continue with the refined precision,
and these steps are repeated until the error location can be proved to be unreachable or a feasible
counterexample is found. The CEGAR algorithm relies on satisfiability modulo theories (SMT) [BT18;
BHMO09] in the background to build the ARG and to refine the precision.

Thesis 2 objectives. Despite applying abstraction and CEGAR, scalability is still a major limiting
factor in software model checking. Successful verification usually requires the combination of
multiple approaches [BLW15; BDW15; JD16] or a portfolio of different methods [Tul+14; Dem+17;
Dar+18; GD19; RW19]. The main objective of this research is to improve the efficiency of the state
of the art by developing new strategies for both abstraction and refinement by novel extensions
and combinations of existing approaches.

1.5 Blockchain-Based Decentralized Systems

Blockchain-based distributed ledgers are aiming to replace centralized solutions that require a trusted
intermediary (e.g. banks). Early applications of the blockchain, such as the Bitcoin [Nako08], focused
on implementing cryptocurrencies, i.e. digital money. Their success generated enormous attention,
and later more general solutions emerged, for example, Ethereum [Wo017]. In the general setting,
the ledger allows the deployment of programs (so-called smart contracts [Sza94]) that can store an
arbitrary state (as data) on the blockchain and enable manipulating their data via transactions [AW18].
However, high-profile bugs and vulnerabilities highlighted that smart contracts are often prone to
critical errors [ABC17; DMH17; Dat18]. Although the code of the contracts is usually small, it often
carries a significant amount of value per line (e.g. by managing assets or tokens) [OH]J20].

While there have been various works on verifying smart contracts with static analysis [Tsa+18;
Luu+16; Muel8; FGG19] and theorem proving [Hil+18; Hir17], not much effort had been put into
the automated verification of high-level, functional properties of contracts. Due to the transactional
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behavior of the blockchain, modular specification and verification [Miil02] is an appealing approach
for checking smart contracts. Boogie [DL05] is an intermediate verification language (IVL), which
is supported by different backends, including a modular verification engine [Bar+06]. The units of
verification in Boogie are the procedures, which can be annotated with specification expressions such
as pre- and postconditions. Modular program verification checks if the specification of each procedure
is satisfied by assuming the related modules’ specifications to hold. This is achieved by encoding each
procedure as SMT formulas (verification conditions) and discharging them with SMT solvers.

Thesis 3 objectives. The main objective of this research is to develop an expressive and efficient
modular specification and verification approach for checking high-level functional properties of
smart contracts by translating them to the Boogie IVL.

2 New Results

New results are grouped by the three main domains (concurrent and asynchronous systems, embedded
software code and blockchain-based decentralized systems). Most of the research has been carried out
in collaboration with other researchers, but I emphasize my own contributions.

2.1 Extensions to the CEGAR Approach on Petri Nets

The authors only published a partial proof on the soundness of their algorithm and did not examine
the set of problems on which it gives a conclusive answer [WW11]. In our initial work, we proved
that one of the heuristics in their algorithm is unsound, i.e. a reachable state might be determined
as unreachable [c4], and we also suggested a fix [j1]. We also showed a whole subclass of Petri nets
for which their algorithm terminated with an inconclusive answer [c4]. In this thesis, we define the
concept of distant invariants and propose a new iteration strategy @, which extends the class of
reachability problems that could be analyzed [c5]. Despite the extension, the improved algorithm can
still give inconclusive answers, but we provide theoretical investigations on its limitations [c5].

Another limitation of the original algorithm is that it only works for Petri nets without any ex-
tensions. One particularly interesting extension is the inhibitor arc construct, which allows testing
the lack of tokens at a place, lifting the expressive power of Petri nets to be Turing complete [Pet81].
We extend the constraint generation heuristic of the original algorithm to be able to handle inhibitor
arcs @2 [c4]. Although reachability with inhibitor arcs is undecidable in general [Chr99], we present
examples where our extension works.

To further improve the expressive power of the analysis, we extend the original algorithm to
be able to handle reachability of predicates @D [c4]. In this generalized version of reachability, one
can define an arbitrary linear condition (predicate) over the state to be reached. This improves the
expressive power of the algorithm as, for example, it allows to specify the state to be reached partially
(e.g. one component in a larger system).

Although the algorithm approximates the state space with equations, the solution space still has
to be traversed. We experiment with breadth- and depth-first search strategies and propose a hybrid
search strategy (based on a new partial order between solutions) to combine their strengths [c5].

We implemented the original algorithm and its extensions in the PETRIDOTNET modeling and
analysis tool [c7], which is freely available? and used in education and research projects at the Bu-
dapest University of Technology and Economics. We also evaluate the new contributions on roughly
40 input models (from the Model Checking Contest [Kor+12] and some custom models). Results show
that the new algorithms could outperform existing tools and approaches on various inputs in terms
of conclusive answers and expressive power [c¢5]. My contributions are summarized as follows.

*http://petridotnet.inf.mit.bme.hu/en/
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Thesis 1 I proposed extensions and improvements to the CEGAR-based reachability analysis
of Petri nets, lifting its expressive power and increasing the amount of conclusive answers.
1.1 I generalized the algorithm to be able to solve reachability of predicates, where the target
state to be reached can be described with a set of linear constraints.
1.2 I extended the algorithm to be able to handle Petri nets with inhibitor arcs, raising its
expressive power.
1.3 I defined the concept of distant invariants and proposed a new iteration strategy, which
extended the kind of problems the algorithm could solve.
1.4 I defined a new ordering between partial solutions and a corresponding hybrid search
strategy that can speed up the convergence of the algorithm without losing solutions.

Joint work. Andras Voros and Taméas Bartha were taking part in this research as my B.Sc. su-
pervisors. Andras Voros gave the proof for inconclusive answers in his Ph.D. thesis [V6r18]. Zoltan
Martonka, a fellow student, developed some optimizations, took part in the implementation, and was
responsible for the proof of unsoundness.

Publications. The extensions of inhibitor arcs and predicates were first presented at the SPLST
2013 conference [c4] and later further elaborated in the Acta Cybernetica journal [j1]. The distant
invariants were defined in the author’s B.Sc. thesis [a20] and then presented at the Petri Nets 2015
conference [c5] along with the hybrid search strategy. The implementation of PETRIDOTNET (includ-
ing the plug-in for the algorithms described in this thesis) was presented in a tool paper at the Petri
Nets 2016 conference [c7] and elaborated in more detail with applications in the Science of Computer
Programming journal [j2].

2.2 Efficient Strategies for CEGAR-based Software Model Checking

In our prior work, we defined a generic CEGAR framework for programs described by transition
systems to be able to combine different approaches [c6]. This framework successfully facilitated the
use of predicates and explicit values and incorporated different interpolation strategies. Later, we
generalized this framework to also support programs described by control-flow automata [c9].

This leads us to this thesis, where we develop various improvements to both the abstraction and the
refinement phases of CEGAR [j3]. For abstraction, we define an extension for the explicit-value domain
that can perform a limited enumeration @D of possible successor states when an expression cannot be
precisely evaluated (due to the nature of abstraction). While this has a minimal performance penalty, it
can be compensated later by the increased precision. We also propose a new search strategy @2 in the
abstract state space that uses structural information from the program about the error location to guide
the search more efficiently towards counterexamples. This approach can also help when checking
correct programs because CEGAR encounters (abstract) counterexamples during intermediate steps.

For refinement, we develop a backward search-based interpolation strategy @ to track the reason
of infeasibility of abstract counterexamples back to the earliest point in the program. We also introduce
an approach that collects multiple counterexamples during abstraction and refines them at once,
allowing information to be exchanged between the different counterexamples. Both contributions aim
to yield a faster convergence to the appropriate precision.

We implemented the CEGAR algorithm and its improvements in the open-source® THETA verifi-
cation framework [c9]. We also evaluate the new contributions on 445 input models from the Com-
petition on Software Verification [Bey15] and 90 input PLC programs from CERN [Fer+15]. Results
highlight various categories of inputs where the new contributions improved efficiency remarkably.
My contributions are summarized as follows.

*https://github.com/FTSRG/theta
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Thesis 2 I proposed various improvements and strategies to CEGAR-based software model
checking, increasing the efficiency of the algorithm.

2.1 I generalized explicit-value analysis to be able to enumerate a predefined, configurable
number of successor states, improving its precision, but avoiding state space explosion.

2.2 Tadapted a search strategy to the context of CEGAR that estimates the distance from the
erroneous state in the abstract state space based on the structure of the software, efficiently
guiding exploration towards counterexamples.

2.3 I introduced an interpolation strategy based on backward reachability, that traces back
the reason of infeasibility to the earliest point in the program, yielding a faster refinement
convergence.

2.4 1 described an approach for refinement based on multiple counterexamples, which al-
lows exchanging information between counterexamples and provides better quality re-
finements.

Joint work. Andras Voros and Tamas Toth were taking part in the development of the generic
framework for transition systems as my M.Sc. supervisors. Istvan Majzik, the Ph.D. supervisor of
Tamas Toth, also helped with his advice and feedback. Zoltan Micskei was taking part in the devel-
opment of the new strategies as my Ph.D. supervisor. The implementation of THETA was a joint work
with Tamas Téth. He was mainly responsible for the core of the framework and the algorithms for
timed systems, while I developed the CEGAR algorithm related to transition systems and control-flow
automata. The C frontend was developed by a M.Sc. student, Gyula Sallai, whom I co-advised.

Publications. The generic framework for transition systems was defined in the M.Sc. thesis of the
author [a21] and published at the FORTE 2016 conference [c6]. Preliminary experiments and evalua-
tions were presented at the Ph.D. Minisymposia at BME [e12; e13]. The improvements to abstraction
and refinement were published in the Journal of Automated Reasoning [j3]. The implementation was
presented in a tool paper at FMCAD 2017 [c9] and in a paper about the C frontend at VPT 2017 [c8].

2.3 Modular Specification and Verification of Smart Contracts’

In this thesis we define a modular specification and verification approach for smart contracts written in
the Solidity language [Eth18]. We adapt various existing specification constructs @D (such as assertions,
pre- and postconditions and invariants) to the context of smart contracts [c10]. Such properties can
be specified in the code itself using annotations that extend the Solidity language. We also propose
some domain specific properties @2 (e.g. sums of balances) that are not expressible directly in Solidity
or the verification logic [c10].

We define a translation @3 from annotated Solidity contracts to the Boogie IVL [c10]. This al-
lows us to discharge the verification conditions automatically by leveraging modular verification and
SMT solvers. While a significant part of the translation is similar to standard program verification,
there are various challenging blockchain-specific details that are not common in general program-
ming languages. We develop an encoding of arithmetic G- using modulo operations that captures the
bit-precise semantics of execution, while also being scalable to practical bit-widths (256 bits) even
with nonlinear arithmetic expressions [c10]. This opens up the possibility to check for integer under-
and overflows without introducing an overwhelming amount of false alarms.

We implemented the translation in the open-source* tool soLc-VERIFY [c10] based on the Solidity
compiler and the BooGIE verifier. We evaluate our approach on several annotated and unannotated
real-life examples by finding bugs, fixing them, and proving correctness with minimal user effort. My
contributions are summarized as follows.

*The author was also affiliated with SRI International (https://www.sri.com) during the work described in this thesis.
*https://github.com/SRI-CSL/solidity


https://www.sri.com
https://github.com/SRI-CSL/solidity

Akos Hajdu Ph.D. Thesis Booklet

Thesis 3 I defined a modular specification and verification approach for smart contracts by
annotating and translating them to an intermediate verification language.
3.1 I adapted existing modular specification constructs to the context of smart contracts.
3.2 I proposed domain-specific annotations for the modular specification and verification of
smart contracts.
3.3 Iintroduced a mapping from the Solidity contract-oriented programming language to the
Boogie intermediate verification language.
3.4 Idescribed a modular arithmetic encoding that supports scalable bit-precise reasoning on
arithmetic operations.

Joint work. Dejan Jovanovi¢ was taking part in this research as my internship supervisor at SRI In-
ternational. He was also responsible for downloading contracts and running the tool on them. Michael
Emmi and Gabriela Ciocarlie also helped with their feedback and advice during our discussions.

Publications. The results and the implementation were presented at the VSTTE 2019 confer-
ence [c10]. I also gave a developer-oriented talk about the usage of the tool at the 2020 Solidity Sum-
mit.> A paper on precise support for reference types (arrays, structs) and different memory locations
was published at the ESOP 2020 conference [c11] and was also accepted for presentation at the SMT
2020 workshop.® Furthermore, a US patent including (but not limited to) my results was also filed in
December 2018 and is currently pending.

3 Application of the New Results

3.1 Extensions to the CEGAR Approach on Petri Nets

The CEGAR algorithm and our new contributions are implemented in PETRIDOTNET [c7], which is
used in education and research projects at the Budapest University of Technology and Economics.
The tool and the algorithm were used during an internship at evopro’ for the modeling and analysis of
public transportation systems [j2]. Furthermore, PETRIDOTNET is used in education as a demonstrator
tool and for the homework at the Formal Methods course of the Budapest University of Technology
and Economics [c7; j2].

3.2 Efficient Strategies for CEGAR-based Software Model Checking

The generic CEGAR framework and the algorithmic improvements are implemented as part of the
THETA open-source verification framework [c9]. During a project with CERN we integrated THETA as
a backend verifier to the PLCVERIF® tool [DBM19]. PLCVERIF works by translating the source code of
PLC (programmable logic controller) programs to an intermediate (CFA-like) representation, which
can then be mapped to the input language of various model checkers [DFB15]. THETA was successfully
integrated with PLCVERIF, and an extensive benchmarking session on 90 input PLC codes confirmed
that two configurations of THETA (including our new contributions) could together verify all of them.

Various student theses and works are built on THETA [Czi16; Far16; FB18; Teg18], on the generic
CEGAR framework [Sal16; ST17; Baj18; Dob19; MV20] and on our new contributions [Sal19]. Fur-
thermore, THETA is also used in education as a demonstrator in the Critical Architectures Laboratory
course, where students develop bounded model checking and CEGAR algorithms.

*https://solidity-summit.ethereum.org/
Shttps://fscd-ijcar-2020.org/workshops#SMT
"http://www.evopro.hu/en
Shttp://cern.ch/plcverif/
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4 Publication List

3.3 Modular Specification and Verification of Smart Contracts

The specification and verification approach is implemented in the open-source sOLC-VERIFY tool [c10].
SOLC-VERIFY has been used in a project (TET-16-PT) in collaboration with the University of Coimbra.
The goal of the project was to inject faults into smart contracts and assess their impact on the system.
Results indicated that using soLc-vERIFY in the workflow could significantly reduce the number of
undetected errors.

Furthermore, soLc-VERIFY has also been used to check for behavioral simulation between different
smart contracts implementing the same interface [Bei+20].

4 Publication List

Number of publications: 19
Number of peer-reviewed journal papers (written in English): 3
Number of articles in journals indexed by WoS or Scopus: 3

Number of publications (in English) with at least 50% contribution of the author: 8

Number of peer-reviewed publications: 18
Number of independent citations: 30

4.1 Publications Linked to the Theses

Journal International conference Local
papers and workshop papers events
Thesis 1 [j1] [j2] [c4] [c5] [c7] —
Thesis 2 [j3] [c6] [c8] [c9] [e12] [e13]
Thesis 3 — [c10] [c11] —

This classification follows the faculty’s Ph.D. publication score system.

Journal Papers

[j1] Akos Hajdu, Andras Véros, Tamas Bartha, and Zoltan Martonka. Extensions to the CEGAR ap-
proach on Petri nets. Acta Cybernetica 21(3), 2014, pp. 401-417. por: 10.14232/actacyb.21.3.2014.
8.

[j2] Andras Voros, Daniel Darvas, Akos Hajdu, Attila Klenik, Krist6f Marussy, Vince Molnar, Tamés
Bartha, and Istvan Majzik. Industrial applications of the PetriDotNet modelling and analysis
tool. Science of Computer Programming 157, 2018, pp. 17-40. pot: 10.1016/j.scic0.2017.09.003.

[j3] Akos Hajdu and Zoltan Micskei. Efficient strategies for CEGAR-based model checking. Journal
of Automated Reasoning Online first, 2019. por: 10.1007/s10817-019-09535-x.

International Conference and Workshop Papers

[c4] Akos Hajdu, Andras Vords, Tamas Bartha, and Zoltin Martonka. Extensions to the CEGAR ap-
proach on Petri nets. In: Proceedings of the 13th Symposium on Programming Languages and
Software Tools, pp. 274-288. University of Szeged, 2013.

[c5] Akos Hajdu, Andras Voros, and Tamas Bartha. New search strategies for the Petri net CEGAR
approach. In: Application and Theory of Petri Nets and Concurrency, Lecture Notes in Computer
Science, vol. 9115, pp. 309-328. Springer, 2015. po1: 10.1007/978-3-319-19488-2_16.

[c6] Akos Hajdu, Tamés To6th, Andras Vords, and Istvan Majzik. A configurable CEGAR framework
with interpolation-based refinements. In: Formal Techniques for Distributed Objects, Components
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[c9]

[c10]

[c11]

and Systems, Lecture Notes in Computer Science, vol. 9688, pp. 158—174. Springer, 2016. DOI:
10.1007/978-3-319-39570-8_11.

Andras Véros, Daniel Darvas, Vince Molnér, Attila Klenik, Akos Hajdu, Attila Jambor, Tamas
Bartha, and Istvan Majzik. PetriDotNet 1.5: extensible Petri net editor and analyser for educa-
tion and research. In: Application and Theory of Petri Nets and Concurrency, Lecture Notes in
Computer Science, vol. 9698, pp. 123-132. Springer, 2016. Dor: 10.1007/978-3-319-39086-4_9.

Gyula Sallai, Akos Hajdu, Tamas Téth, and Zoltan Micskei. Towards evaluating size reduction
techniques for software model checking. In: Proceedings of the Fifth International Workshop on
Verification and Program Transformation, Electronic Proceedings in Theoretical Computer Sci-
ence, vol. 253, pp. 75-91. Open Publishing Association, 2017. por: 10.4204/EPTCS.253.7.

Tamas Téth, Akos Hajdu, Andras Vords, Zoltan Micskei, and Istvan Majzik. Theta: a framework
for abstraction refinement-based model checking. In: Proceedings of the 17th Conference on For-
mal Methods in Computer-Aided Design, pp. 176-179. 2017. po1: 10.23919/FMCAD.2017.8102257.

Akos Hajdu and Dejan Jovanovi¢. Solc-verify: a modular verifier for Solidity smart contracts.
In: Verified Software. Theories, Tools, and Experiments, Lecture Notes in Computer Science,
vol. 12301, pp. 161-179. Springer, 2020. por: 10.1007/978-3-030-41600-3_11.

Akos Hajdu and Dejan Jovanovié¢. SMT-friendly formalization of the Solidity memory model. In:
Programming Languages and Systems, Lecture Notes in Computer Science, vol. 12075, pp. 224~
250. Springer, 2020. po1: 10.1007/978-3-030-44914-8_9.

Local Event Papers

[e12]

[e13]

4.2

Akos Hajdu and Zoltan Micskei. Exploratory analysis of the performance of a configurable CE-
GAR framework. In: Proceedings of the 24th PhD Mini-Symposium, pp. 34-37. Budapest Univer-
sity of Technology and Economics, Department of Measurement and Information Systems, 2017.
por: 10.5281/zenodo.291895.

Akos Hajdu and Zoltan Micskei. A preliminary analysis on the effect of randomness ina CEGAR
framework. In: Proceedings of the 25th PhD Mini-Symposium, pp. 32-35. Budapest University of
Technology and Economics, Department of Measurement and Information Systems, 2018. por:
10.5281/zen0do.1219261.

Additional Publications (Not Linked to Theses)

International Conference and Workshop Papers

[c14]

[c15]

[c16]

Akos Hajdu, Rébert Német, Szilvia Varré-Gyapay, and Andras Vords. Petri net based trajec-
tory optimization. In: ASCONIKK 2014: Extended Abstracts. Future Internet Services, pp. 11-19.
University of Pannonia, 2014.

Bence Czipd, Akos Hajdu, Tamas Toéth, and Istvan Majzik. Exploiting hierarchy in the
abstraction-based verification of statecharts using SMT solvers. In: Proceedings of the 14th Inter-
national Workshop on Formal Engineering Approaches to Software Components and Architectures,
Electronic Proceedings in Theoretical Computer Science, vol. 245, pp. 31-45. Open Publishing
Association, 2017. por: 10.4204/EPTCS.245.3.

Rebeka Farkas, Tamas Toth, Akos Hajdu, and Andras Vords. Backward reachability analysis
for timed automata with data variables. In: Proceedings of the 18th International Workshop on
Automated Verification of Critical Systems, Electronic Communications of the EASST, vol. 76,
pp. 1-20. EASST, 2018. por: 10.14279/tuj.eceasst.76.1076.
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Local Event Papers

[e17]

[e18]

Rebeka Farkas and Akos Hajdu. Activity-based abstraction refinement for timed systems. In:
Proceedings of the 24th PhD Mini-Symposium, pp. 18-21. Budapest University of Technology and
Economics, Department of Measurement and Information Systems, 2017. po1: 10.5281/zenodo.
291891.

Viktéria Dorina Bajkai and Akos Hajdu. Software model checking with a combination of explicit
values and predicates. In: Proceedings of the 26th PhD Mini-Symposium, pp. 4-7. Budapest Uni-
versity of Technology and Economics, Department of Measurement and Information Systems,
2019. por: 10.5281/zenodo0.2597969.

Technical Reports

[r19]

4.3

[a20]

[a21]

[a22]

[a23]

Akos Hajdu. Making the TTreeReader interface more accessible. Tech. rep. CERN-STUDENTS-
Note-2015-039. European Organization for Nuclear Research (CERN), Aug. 2015.

Additional Work
Akos Hajdu. Extensions to the CEGAR Approach on Petri Nets. Bachelor’s thesis. Budapest
University of Technology and Economics, 2013.

Akos Hajdu. A Survey on CEGAR-based Model Checking. Master’s thesis. Budapest University
of Technology and Economics, 2015.

Akos Hajdu and Zoltan Micskei. Supplementary Material for the paper "Efficient Strategies for
CEGAR-based Model Checking". 2018. por: 10.5281/zenodo.1252784. (Dataset).

Akos Hajdu, Dejan Jovanovi¢, and Gabriela Ciocarlie. Formal Specification and Verification of
Solidity Contracts with Events. 2020. URL: https://arxiv.org/abs/2005.10382. (Preprint).
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