
Formal Modeling and Verification of Blockchain System

Zhangbo DUAN
State Key Laboratory of Software

Development Environment, Beihang
University, Beijing 100191, China

(86)18610613100
duanzhangbo@buaa.edu.cn

Xiaomin BAI

State Key Laboratory of Software
Development Environment, Beihang

University, Beijing 100191, China
(86)13051386669

baixiaomin@buaa.edu.cn

Hongliang MAO
National Computer Network

Emergency Response Technical
Team/Coordination Center of China,

Beijing 110105, China
mhl@cert.org.cn

Kai HU

Corresponding author
State Key Laboratory of Software

Development Environment, Beihang
University, Beijing 100191, China

(86)010 82339460
hukai@buaa.edu.cn

Zhidong CHEN
State Key Laboratory of Software

Development Environment, Beihang
University, Beijing 100191, China

(86)18500226278
czdbuaa@buaa.edu.cn

Jean-Pierre Talpin

Institut National de Recherche en
Informatique et en Automatique

(INRIA) Rennes, Rennes, France
(33) 299847436

jean-pierre.talpin@inria.fr

ABSTRACT

As a decentralized and distributed secure storage technology, the

notion of blockchain is now widely used for electronic trading in

finance, for issuing digital certificates, for copyrights management,

and for many other security-critical applications. With

applications in so many domains with high-assurance

requirements, the formalization and verification of safety and

security properties of blockchain becomes essential, and the aim

of the present paper. We present the model-based formalization,

simulation and verification of a blockchain protocol by using the

SDL formalism of Telelogic Tau. We consider the hierarchical

and modular SDL model of the blockchain protocol and exercise a

methodology to formally simulate and verify it. This way, we

show how to effectively increase the security and safety of

blockchain in order to meet high assurance requirements

demanded by its application domains. Our work also provides

effective support for assessing different network consensus

algorithms, which are key components in blockchain protocols, as

well as on the topology of blockchain networks. In conclusion,

our approach contributes to setting up a verification methodology

for future blockchain standards in digital trading.

CCS Concepts

• Software and its engineering➝Software organization and

properties➝Software functional properties➝Formal

methods➝Model checking.

Keywords
Blockchain protocols; Formal methods; Model-checking; Formal

Verification.

1. INTRODUCTION
The notion of blockchain [1] is an emerging decentralized

protocol, network architecture and distributed computing

paradigm, which constitutes the core technology of the digitally

encrypted monetary system implemented by Bitcoin [2]. The

notion of blockchain [1] is an emerging decentralized protocol,

network architecture and distributed computing paradigm, which

constitutes the core technology of the digitally encrypted

monetary system implemented by Bitcoin [2]. It performs peer-to-

peer transactions, coordination and collaboration in a distributed

and decentralized network by means of data encryption, time

stamping, distributed consensus and economic incentives.

However, with the application in so many areas with high-

assurance requirements, the study of security and safety of

blockchain becomes particularly important. To make blockchain

safe and reliable platforms for information sharing, and the

praised solution for value transfer, formal methods [3] must be

employed to provide sufficient mathematical evidences of security

and safety guarantees to users.

Formal methods [3] are mathematically based techniques for the

specification, development and verification of software and

hardware systems that provide irrefutable evidence as to the

reliability and robustness of a system design, up to its

specification. Formal verification employs two types of methods:

model checking and theorem proving. They are of great

significance to the development of embedded real-time systems

[4], network protocols [5], credit card authentication systems or

other High-Assurance systems.

The blockchain network can be regarded as an instance high-

confidence distributed communication protocol. Therefore, the

introduction of formal methods can effectively improve the

security and overall credibility of the blockchain system to end

users. We introduce a hierarchical and modular modeling method

to formalize the blockchain protocol. This model contributes to

improving the development automation level, shortening the

development time, and reducing the possibility of error in the

coding process. Traditional blockchain experiments often require

the deployment of a large number of computers to meet their

experimental conditions. With the blockchain formal modeling

method, multi-node blockchain simulation can be achieved on a

single computer. Furthermore, it allows us to study the properties

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

ICCMS 2018, January 8–10, 2018, Sydney, Australia

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6339-6/18/01…$15.00
https://doi.org/10.1145/3177457.3177485

231

mailto:baixiaomin@buaa.edu.cn

of different consensus algorithms, network topologies and inter-

blockchain transactions using smart contracts [6] over a given

blockchain network by solely relying on our blockchain model.

This all significantly contributes to developing, experimenting and

assessing solutions for the blockchain standards of the future. In

summary, the main contributions of this paper are:

1) We introduce the formal modeling and verification

method for blockchain systems;

2) We design a hierarchical and modular SDL model of a

crowdfunding private blockchain [7] using Telelogic Tau

[8];

3) We study simulation and formal verification method of

the blockchain model.

The paper is organized as follows. Section 2 reviews related

works. Section 3 presents our SDL model of a crowdfunding

private blockchain in Telelogic Tau. Section 4 presents the

simulation and verification of that blockchain model. Section 5

concludes our work.

2. RELATED WORK

2.1 Formal Modeling Language
A critical issue of this paper is to find an appropriate formal

modeling language to model the blockchain system. Since a

blockchain system can be abstracted as a network protocol, we

have considered several types of model checking formal

languages based on finite state machines, which are listed below.

SDL [9] (Specification and Description Language) is an object-

oriented, formal language defined by the International

Telecommunication Union (ITU) based on EFSM (Extended

Finite State Machine). SDL is able to describe the structure,

behavior, and data of real-time and distributed communicating

systems with a mathematical rigor that eliminates ambiguities and

guarantees system integrity. It is widely used in network protocol

engineering. IEEE has begun to use SDL to define its standards.

ESTELLE [10] is also based on EFSM, but it uses Pascal syntax

and data types. The EFSM of ESTELLE is basically the same as

SDL, but they are different in some concepts. ESTELLE is mainly

used for distributed, parallel message processing systems,

communication protocols and services.

PROMELA [11] (Process or Protocol Meta Language) is a

verification modeling language introduced by Gerard J. Holzmann.

The language allows for the dynamic creation of concurrent

processes to model, for example, distributed systems.

Among those formal languages, SDL has very strong description,

verification and simulation capabilities. Along with its tool

Telelogic Tau, it is widely used in industry. Therefore, we will use

SDL as our blockchain modeling language.

2.2 The Application of Formal Methods in

Blockchain
In the field of blockchain, application of formal methods has been

proposed several times, but available implementations are still

few.

 [12] proposes a temporal “rolling” blockchain and proof that this

rolling blockchain maintains the key security principles and

provides the same security properties as a traditional blockchain.

It does not consider introducing any additional vulnerability. The

approach uses the B language to model the blockchain system.

The model is simple and intuitive but its implementation is closed

source.

In [13], the author modeled Bitcoin blockchain using Petri nets

and analyzed the connections between places (bitcoin addresses)

and transitions (bitcoin transactions). Again, the model does not

scale to a suitable level of detail to fully specify the

implementation of all protocols involved.

Another important application of formal methods concerns smart

contracts executed on blockchain. [14] uses F* language to verify

smart contracts. This paper shows that the type and effect system

of F* is flexible enough to express and prove non-trivial

properties.

Therefore, the SDL modeling, simulation and verification method

based on blockchain proposed in this paper effectively fills the

gaps of related proposals. The hierarchical modular SDL

modeling method provides effective support for further

developments, such as consensus algorithms, network topology

and inter-blockchain transactions.

3. MODELING

3.1 Hierarchical Modeling
For a blockchain system, we can divide it into five layers as

shown in Figure 1 : application layer, smart contract layer,

consensus layer, network layer and data layer.

Consensus layer

PoW PoS DPoS ……

Network layer

P2P NetWork Propagation Verification

Data layer

Data block Chain structure Time stamp

Hash function Merkle Tree
Asymmetric

encryption

Blockchain system

Smart contract layer

Application layer

Smart contract script Call Operation

Programmable currency Programmable Finance

Figure 1. Blockchain infrastructure.

The data layer is for block generation, blockchain construction

and storage. The network layer has functions such as unicast,

broadcast, multicast, and filtration of data packets. The ability to

join and delete nodes is also necessary. Consensus layer is the

core level of the blockchain. It defines the rules of the blockchain

operation, such as agreement of nodes, backup, fault tolerance,

data consistency and partition fault tolerance. Smart contract layer

implements the write, compilation and execution of smart contract.

The application layer is the upper layer of various applications,

such as electronic money system of the first generation blockchain,

programmable finance, medical and supply chain of the second

generation blockchain. Among these layers, data layer, network

layer and consensus layer implement the main functions of

blockchain system.

232

In SDL, a structure can be described at three levels [15]: system,

block, or process. A system represents the object to be described.

A system communicates with the outside environment through

channels and signals. A system contains one or several blocks and

a block contains one or several processes. Most functions of a

SDL system are described the process level. SDL relates to

conventional programming languages by using blocks to represent

modules and processes to describe functionalities.

Based on the analysis of blockchain characteristics and the

organization of SDL, we propose a blockchain-based hierarchical

modeling method. In this paper, we focus on the most important

component of blockchain: the consensus layer.

3.1.1 Analysis and the definition of data structure
As distributed and decentralized architectures, blockchain have

not yet gained the status international standards. We choose a

private blockchain system introduced in [7] as our modeling target.

In this system, an Improved Byzantine Fault Tolerant Algorithm

is applied as consensus algorithm.

First, we define signals and data structures in our model. A block

in SDL is presented as a pair with one header BT and a body BH:

 () with 〈 〉 and

〈
〉

In the header, represents the hash value of previous block,

the hash value of this block, the timestamp, the root of

merkle tree, and current block height. The essence of the

blockchain system is a distributed database, and the data stored in

the database are collectively referred as "transaction" in the

blockchain system. In our model, due to the performance of the

SDL tool, we use an integer type to represent a transaction. Figure

2 shows the definition of a block structure in our model.

newtype blockchain struct

 prehash integer;

 hash integer;

 length integer;/*the length of blocks*/

 merkleroot integer;

 ti Time;/*Timestamp*/

 translist list;

endnewtype;

newtype list

 array(maxit, integer)

endnewtype;

syntype maxit =Integer constants 0:25

endsyntype;
Figure 2. Definition of a block structure.

As a list of data blocks linked in chronological order, blockchain

can be regarded as a block-driven singleton state machine,

including the non-empty state set, the input transaction set, the

state transition function, the start state, and the acceptance state

set. The formal description of the blockchain states is as follows:

 ()

Among them:

 Q is a non-empty state set, which is all states of the

blockchain system.

 is the set of new generated and consensus blocks.
 is the state transition function, . For

example, () , in which , .

 is the start state, which is the state of the global

system when the system is initialized.

 F is the acceptance state set. .
At the beginning of the model, a genesis block is generated. At

this time, the state of the model is the start state. As the

transactions arrive, the model begins to package the transactions

and selects the leader node to generate a block. The block is

broadcast by the leader node to other nodes in the blockchain

network. Other nodes receive and verify the block to determine

whether the block passes consensus. The consensus block stores

the hash of the previous block so as to add it at the end of the

blockchain and complete the transfer of the blockchain state.

3.1.2 Definition of system and block
According to the above analysis and SDL features, the system

diagram and the block diagram of single node in the blockchain

system are shown in Figure 3.

Figure 3. System and block structure diagram.

Figure 4. Example of process.

3.1.3 Definition of process

233

Inside the process Main, 14 process diagrams and 6 procedures

implement the functions of a single node in the blockchain system.

An example of process is shown in Figure 4. This part shows the

process of block verification after the current node receives the

block generated by the leader node.

Firstly, we compare the size of the current node with the received

block size. If the height of the current node is greater or equal than

that of the received block, the latter is considered wrong or resent

and voted against. If the size of the current node is less than the

height of the received block by one, this means that the block of

the current node is missing. Hence, we perform a block

synchronization. Finally, if the current node size equals the

received block size minus one, then the block size is valid. In the

next step, we verify that the hash of the previous block equals the

prehash present in the header of the cur-rent block. If not, it we

vote against it. Finally, we verify the transactions, merkle tree and

hash value. Once all the verifications are passed, we vote in favor

of the block.

3.2 Modular Modeling
A blockchain network connects multiple blockchain nodes

through a specific topology. As the case of reaching consensus of

Byzantine Failures is , in which means the number of

good nodes and means the number of bad nodes, so the

minimum number of nodes in a private blockchain network is four.

According to the previous blockchain consensus layer model, we

can establish a four-node blockchain network model as shown in

Figure 5. It is a model with 4 nodes Node1 to Node4. Every node

is a SDL block which contains a single node as described in 3.1.2.

Figure 5. System structure diagram.

A modular blockchain network model is of great significance to

conduct further research such as consensus algorithms, network

topology or inter-blockchain transaction. It can further simplify

the implementation of the software and hardware environment of

a traditional blockchain network by, e.g., allowing to generate

modules of code from models, automatically. Finally, the generic

model can be applied to additional case studies and applications of

blockchains, hence reducing the design workload considerably.

4. SIMULATION AND VERIFICATION

4.1 Simulation
The simulation the blockchain network allows us to check

whether all of its functions are operational. Before the simulation,

a static analysis should be done to guarantee the correctness of

syntax and semantic of the model. For this part, we use the

simulator module of Telelogic Tau. In our model, we add a

TransSend block, which sends 25 virtual transactions (every

transaction is presented by a random number) to 4 nodes every

minute. We only have to input a “Begin” signal to start the whole

system. To ensure the validity of our Improved Byzantine Fault

Tolerant Algorithm, we assume that Node1 is a bad node (which

means Node1 always receive different transactions with other 3

nods) and restart our simulation.

We can observe a running fragment of the blockchain simulation.

In the following we have an example in Figure 6.

First, we observe the blockchain storage status of each node. We

can see that every node has exactly the same storage status. Their

blockchain length are all 7. (Transactions are so numerous that

only part of the blockchain storage is shown below. We carefully

compared the blockchain storage of these 4 nodes. The results

show that they are all exactly the same. Besides, all these 7 blocks

plus the genesis block are linked in chronological order by hash

value).

Figure 6. Simulation result.

The simulation of Telelogic Tau can also generate MSC charts

which clearly demonstrate the proper, deterministic, operations of

the system including the input and output of signals, state

transition, and whether or not the timer has overflowed. For

reasons of space, we will not go into details here.

4.2 Verification
After modeling and simulation of the blockchain system, the static

analyzer can find most of the static lexical and typing errors.

However, it cannot find dynamic runtime errors such as deadlock,

livelock, boundedness or state ambiguities, unreachable states. To

this end, we use the verification tool of Telelogic Tau: Validator.

When Validator is used to verify an SDL model, the whole SDL

model is replaced by a behavior tree. In the behavior tree, one

node represents one state of the model. The set of all states forms

the state space. Since SDL is a model-checking formal language,

the verification of SDL consists of the exploration and traversal of

the state space. Telelogic Tau provides 6 methods of traversal:

Bit-State, Random Walk, Tree-Walk, Tree-Search, Exhaustive,

234

Verify-MSC. The algorithm of Bit-State exploration is commonly

used for large models. It uses a hash table to reduce the space

during exploration. Figure 7 shows our verification result. From

Figure 7, we can draw the following conclusions:

1) Number of reports

There are 12 reports which are all about warnings of a deadlock

(These 12 warnings are all the same except for their sender and

receiver). We can click on this report to check out the detailed

error trace.

From the MSC validator trace, we can extract the sequence of

actions leading to the deadlock: if only one node can normally

receive transactions while the other three cannot, the entire

blockchain network will fall into a deadlock. This is what we did

not take into account when we initially developed the

crowdfunding private blockchain [7] system.

Figure 7. Verification result.

Except from these warnings, there are no other reports such as

livelock, boundedness or state ambiguities. After we corrected this

deadlock error, we re-simulated and validated the entire model

and found no other errors.

2) Collision risk

The rate of collision risk is 0%. This shows the performance of

the verification is good and the verification result is more reliable.

3) Symbol coverage

The rate of symbol coverage is 17.50%. Although it is far from

100%, it is not a bad result considering that some process cannot

be explored because the timer signals can-not be sent from the

validator.

Through the above analysis, we have optimized our blockchain

model and have made the corresponding improvements to our

source implementation. The benefits of formal verification for

blockchain development has hence been fully demonstrated.

5. CONCLUSION
The blockchain system is a system that requires a high degree of

security and robustness, safety. To this end, we have introduced a

formal modeling and verification methodology for the

development of blockchains. In this paper, we have proposed a

hierarchical and modular modeling method using SDL. The

simulation and verification of the blockchain model has been

demonstrated to provide significant benefits to the safety and

security of development.

The application of formal methods can effectively in-crease the

security and robustness of blockchain systems, improve the

development automation level and shorten the development time.

It can also help to define blockchain standards. Based on the

above results, our next step will be to study different consensus

algorithms for blockchains using SDL, study their performance,

and verify them for reachability, deadlock, livelock, boundedness

and state ambiguities.

6. ACKNOWLEDGMENTS
This work was partially supported by the National Natural

Science Foundation of China under Grant 61672074 and

91538202, Funding of Ministry of Education and China Mobile

MCM20160203, Project of the State Key Laboratory of Software

Development Environment of China under Grant SKLSDE-

2016ZX-16

7. REFERENCES
[1] Wright A, De Filippi P. Decentralized blockchain technology

and the rise of lex cryptographia[J]. 2015.

[2] Nakamoto S. Bitcoin: A peer-to-peer electronic cash

system[J]. Consulted, 2009.

[3] Clarke E M, Wing J M. Formal methods: State of the art and

future directions[J]. ACM Computing Surveys (CSUR), 1996,

28(4): 626-643.

[4] Yang Z, Hu K, Ma D, et al. From AADL to Timed Abstract

State Machines: A verified model transformation[J]. Journal

of Systems & Software, 2014, 93(2):42-68.

[5] Hu K, Liu C, Liu K. Modeling and verification of custom

TCP using SDL[C]// IEEE International Conference on

Software Engineering and Service Science. IEEE, 2013:455-

458.

[6] English S M, Orlandi F, Auer S. Disintermediation of Inter-

blockchain Transactions[J]. arXiv preprint arXiv:1609.02598,

2016.

[7] Chen Z. Research on Private blockchain Based on

Crowdfunding[J]. Journal of Information Security Research,

2017, 3(3): 227-236.

[8] Telelogic B. Telelogic Tau modeling tool[J]. 2010.

[9] Abed S, Al Shayeji M H, Ahmed O, et al. Formal

Specification and Description Language and Message

Sequence Chart to Model and Validate Session Initiation

Protocol Services[J]. World Academy of Science,

Engineering and Technology, International Journal of

Computer, Electrical, Automation, Control and Information

Engineering, 2016, 10(3): 512-520.

[10] Dis B I. Estelle, a formal description technique based on an

extended state transition model[J]. ISO, 1988.

[11] Mikk E, Lakhnech Y, Siegel M, et al. Implementing

statecharts in PROMELA/SPIN[C]//Industrial Strength

Formal Specification Techniques, 1998. Proceedings. 2nd

IEEE Workshop on. IEEE, 1998: 90-101.

[12] Dennis R, Owenson G, Aziz B. A temporal blockchain: a

formal analysis[C]//Collaboration Technologies and Systems

(CTS), 2016 International Conference on. IEEE, 2016: 430-

437.

[13] Pinna A. A Petri net-based model for investigating

disposable addresses in Bitcoin system[J].

[14] Bhargavan K, Delignat-Lavaud A, Fournet C, et al. Short

Paper: Formal Verification of Smart Contracts[J].

[15] Lifa Wu, “Network Protocol Engineering”, Beijing, China:

Publishing House of Electronics Industry,2011,77-79.

235

