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ABSTRACT 

As a decentralized and distributed secure storage technology, the 

notion of blockchain is now widely used for electronic trading in 

finance, for issuing digital certificates, for copyrights management, 

and for many other security-critical applications. With 

applications in so many domains with high-assurance 

requirements, the formalization and verification of safety and 

security properties of blockchain becomes essential, and the aim 

of the present paper. We present the model-based formalization, 

simulation and verification of a blockchain protocol by using the 

SDL formalism of Telelogic Tau. We consider the hierarchical 

and modular SDL model of the blockchain protocol and exercise a 

methodology to formally simulate and verify it. This way, we 

show how to effectively increase the security and safety of 

blockchain in order to meet high assurance requirements 

demanded by its application domains. Our work also provides 

effective support for assessing different network consensus 

algorithms, which are key components in blockchain protocols, as 

well as on the topology of blockchain networks. In conclusion, 

our approach contributes to setting up a verification methodology 

for future blockchain standards in digital trading. 

CCS Concepts 

• Software and its engineering➝Software organization and 

properties➝Software functional properties➝Formal 

methods➝Model checking. 

Keywords 
Blockchain protocols; Formal methods; Model-checking; Formal 

Verification. 

1. INTRODUCTION 
The notion of blockchain [1] is an emerging decentralized 

protocol, network architecture and distributed computing 

paradigm, which constitutes the core technology of the digitally 

encrypted monetary system implemented by Bitcoin [2]. The 

notion of blockchain [1] is an emerging decentralized protocol, 

network architecture and distributed computing paradigm, which 

constitutes the core technology of the digitally encrypted 

monetary system implemented by Bitcoin [2]. It performs peer-to-

peer transactions, coordination and collaboration in a distributed 

and decentralized network by means of data encryption, time 

stamping, distributed consensus and economic incentives. 

However, with the application in so many areas with high-

assurance requirements, the study of security and safety of 

blockchain becomes particularly important. To make blockchain 

safe and reliable platforms for information sharing, and the 

praised solution for value transfer, formal methods [3] must be 

employed to provide sufficient mathematical evidences of security 

and safety guarantees to users.  

Formal methods [3] are mathematically based techniques for the 

specification, development and verification of software and 

hardware systems that provide irrefutable evidence as to the 

reliability and robustness of a system design, up to its 

specification. Formal verification employs two types of methods: 

model checking and theorem proving. They are of great 

significance to the development of embedded real-time systems 

[4], network protocols [5], credit card authentication systems or 

other High-Assurance systems.  

The blockchain network can be regarded as an instance high-

confidence distributed communication protocol. Therefore, the 

introduction of formal methods can effectively improve the 

security and overall credibility of the blockchain system to end 

users. We introduce a hierarchical and modular modeling method 

to formalize the blockchain protocol. This model contributes to 

improving the development automation level, shortening the 

development time, and reducing the possibility of error in the 

coding process. Traditional blockchain experiments often require 

the deployment of a large number of computers to meet their 

experimental conditions. With the blockchain formal modeling 

method, multi-node blockchain simulation can be achieved on a 

single computer. Furthermore, it allows us to study the properties 
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of different consensus algorithms, network topologies and inter-

blockchain transactions using smart contracts [6] over a given 

blockchain network by solely relying on our blockchain model. 

This all significantly contributes to developing, experimenting and 

assessing solutions for the blockchain standards of the future. In 

summary, the main contributions of this paper are: 

1) We introduce the formal modeling and verification 

method for blockchain systems; 

2) We design a hierarchical and modular SDL model of a 

crowdfunding private blockchain [7] using Telelogic Tau 

[8]; 

3) We study simulation and formal verification method of 

the blockchain model.  

The paper is organized as follows. Section 2 reviews related 

works. Section 3 presents our SDL model of a crowdfunding 

private blockchain in Telelogic Tau. Section 4 presents the 

simulation and verification of that blockchain model. Section 5 

concludes our work. 

2. RELATED WORK  

2.1 Formal Modeling Language 
A critical issue of this paper is to find an appropriate formal 

modeling language to model the blockchain system. Since a 

blockchain system can be abstracted as a network protocol, we 

have considered several types of model checking formal 

languages based on finite state machines, which are listed below. 

SDL [9] (Specification and Description Language) is an object-

oriented, formal language defined by the International 

Telecommunication Union (ITU) based on EFSM (Extended 

Finite State Machine). SDL is able to describe the structure, 

behavior, and data of real-time and distributed communicating 

systems with a mathematical rigor that eliminates ambiguities and 

guarantees system integrity. It is widely used in network protocol 

engineering. IEEE has begun to use SDL to define its standards. 

ESTELLE [10] is also based on EFSM, but it uses Pascal syntax 

and data types. The EFSM of ESTELLE is basically the same as 

SDL, but they are different in some concepts. ESTELLE is mainly 

used for distributed, parallel message processing systems, 

communication protocols and services. 

PROMELA [11] (Process or Protocol Meta Language) is a 

verification modeling language introduced by Gerard J. Holzmann. 

The language allows for the dynamic creation of concurrent 

processes to model, for example, distributed systems. 

Among those formal languages, SDL has very strong description, 

verification and simulation capabilities. Along with its tool 

Telelogic Tau, it is widely used in industry. Therefore, we will use 

SDL as our blockchain modeling language. 

2.2 The Application of Formal Methods in 

Blockchain 
In the field of blockchain, application of formal methods has been 

proposed several times, but available implementations are still 

few. 

 [12] proposes a temporal “rolling” blockchain and proof that this 

rolling blockchain maintains the key security principles and 

provides the same security properties as a traditional blockchain. 

It does not consider introducing any additional vulnerability. The 

approach uses the B language to model the blockchain system. 

The model is simple and intuitive but its implementation is closed 

source.  

In [13], the author modeled Bitcoin blockchain using Petri nets 

and analyzed the connections between places (bitcoin addresses) 

and transitions (bitcoin transactions).  Again, the model does not 

scale to a suitable level of detail to fully specify the 

implementation of all protocols involved.  

Another important application of formal methods concerns smart 

contracts executed on blockchain. [14] uses F* language to verify 

smart contracts. This paper shows that the type and effect system 

of F* is flexible enough to express and prove non-trivial 

properties.  

Therefore, the SDL modeling, simulation and verification method 

based on blockchain proposed in this paper effectively fills the 

gaps of related proposals. The hierarchical modular SDL 

modeling method provides effective support for further 

developments, such as consensus algorithms, network topology 

and inter-blockchain transactions. 

3. MODELING 

3.1 Hierarchical Modeling 
For a blockchain system, we can divide it into five layers as 

shown in Figure 1 : application layer, smart contract layer, 

consensus layer, network layer and data layer.  

Consensus layer

PoW PoS DPoS ……

Network layer

P2P NetWork Propagation Verification

Data layer

Data block Chain structure Time stamp

Hash function Merkle Tree
Asymmetric 

encryption

Blockchain system

Smart contract layer

Application layer

Smart contract script Call Operation

Programmable currency Programmable Finance

 

Figure 1. Blockchain infrastructure. 

The data layer is for block generation, blockchain construction 

and storage. The network layer has functions such as unicast, 

broadcast, multicast, and filtration of data packets. The ability to 

join and delete nodes is also necessary. Consensus layer is the 

core level of the blockchain. It defines the rules of the blockchain 

operation, such as agreement of nodes, backup, fault tolerance, 

data consistency and partition fault tolerance. Smart contract layer 

implements the write, compilation and execution of smart contract. 

The application layer is the upper layer of various applications, 

such as electronic money system of the first generation blockchain, 

programmable finance, medical and supply chain of the second 

generation blockchain. Among these layers, data layer, network 

layer and consensus layer implement the main functions of 

blockchain system.  
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In SDL, a structure can be described at three levels [15]: system, 

block, or process. A system represents the object to be described. 

A system communicates with the outside environment through 

channels and signals. A system contains one or several blocks and 

a block contains one or several processes. Most functions of a 

SDL system are described the process level. SDL relates to 

conventional programming languages by using blocks to represent 

modules and processes to describe functionalities.  

Based on the analysis of blockchain characteristics and the 

organization of SDL, we propose a blockchain-based hierarchical 

modeling method. In this paper, we focus on the most important 

component of blockchain: the consensus layer. 

3.1.1 Analysis and the definition of data structure 
As distributed and decentralized architectures, blockchain have 

not yet gained the status international standards. We choose a 

private blockchain system introduced in [7] as our modeling target. 

In this system, an Improved Byzantine Fault Tolerant Algorithm 

is applied as consensus algorithm.  

First, we define signals and data structures in our model. A block 

in SDL is presented as a pair with one header BT and a body BH: 

  (     )  with    〈              〉  and    

〈           
〉 

In the header,   represents the hash value of previous block,    

the hash value of this block,    the timestamp,    the root of 

merkle tree, and    current block height. The essence of the 

blockchain system is a distributed database, and the data stored in 

the database are collectively referred as "transaction" in the 

blockchain system. In our model, due to the performance of the 

SDL tool, we use an integer type to represent a transaction. Figure 

2 shows the definition of a block structure in our model. 

newtype blockchain struct 

  prehash integer; 

  hash integer; 

  length integer;/*the length of blocks*/ 

  merkleroot integer; 

  ti Time;/*Timestamp*/ 

  translist list; 

endnewtype; 

 

newtype list 

  array(maxit, integer) 

endnewtype; 

 

syntype maxit =Integer constants 0:25 

endsyntype; 
Figure 2. Definition of a block structure. 

As a list of data blocks linked in chronological order, blockchain 

can be regarded as a block-driven singleton state machine, 

including the non-empty state set, the input transaction set, the 

state transition function, the start state, and the acceptance state 

set. The formal description of the blockchain states is as follows: 

  (         ) 

Among them: 

 Q is a non-empty state set, which is all states of the 

blockchain system. 

   is the set of new generated and consensus blocks. 
   is the state transition function,        . For 

example,  (   )    , in which       ,    . 

   is the start state, which is the state of the global 

system when the system is initialized.     

 F is the acceptance state set.    . 
At the beginning of the model, a genesis block is generated. At 

this time, the state of the model is the start state. As the 

transactions arrive, the model begins to package the transactions 

and selects the leader node to generate a block. The block is 

broadcast by the leader node to other nodes in the blockchain 

network. Other nodes receive and verify the block to determine 

whether the block passes consensus. The consensus block stores 

the hash of the previous block so as to add it at the end of the 

blockchain and complete the transfer of the blockchain state. 

3.1.2 Definition of system and block 
According to the above analysis and SDL features, the system 

diagram and the block diagram of single node in the blockchain 

system are shown in Figure 3. 

  

Figure 3. System and block structure diagram. 

 
Figure 4. Example of process. 

3.1.3 Definition of process 
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Inside the process Main, 14 process diagrams and 6 procedures 

implement the functions of a single node in the blockchain system. 

An example of process is shown in Figure 4. This part shows the 

process of block verification after the current node receives the 

block generated by the leader node.  

Firstly, we compare the size of the current node with the received 

block size. If the height of the current node is greater or equal than 

that of the received block, the latter is considered wrong or resent 

and voted against. If the size of the current node is less than the 

height of the received block by one, this means that the block of 

the current node is missing.  Hence, we perform a block 

synchronization. Finally, if the current node size equals the 

received block size minus one, then the block size is valid. In the 

next step, we verify that the hash of the previous block equals the 

prehash present in the header of the cur-rent block. If not, it we 

vote against it. Finally, we verify the transactions, merkle tree and 

hash value. Once all the verifications are passed, we vote in favor 

of the block. 

3.2 Modular Modeling 
A blockchain network connects multiple blockchain nodes 

through a specific topology. As the case of reaching consensus of 

Byzantine Failures is       , in which    means the number of 

good nodes and    means the number of bad nodes, so the 

minimum number of nodes in a private blockchain network is four. 

According to the previous blockchain consensus layer model, we 

can establish a four-node blockchain network model as shown in 

Figure 5. It is a model with 4 nodes Node1 to Node4. Every node 

is a SDL block which contains a single node as described in 3.1.2. 

 
Figure 5. System structure diagram. 

A modular blockchain network model is of great significance to 

conduct further research such as consensus algorithms, network 

topology or inter-blockchain transaction. It can further simplify 

the implementation of the software and hardware environment of 

a traditional blockchain network by, e.g., allowing to generate 

modules of code from models, automatically. Finally, the generic 

model can be applied to additional case studies and applications of 

blockchains, hence reducing the design workload considerably. 

4. SIMULATION AND VERIFICATION 

4.1 Simulation  
The simulation the blockchain network allows us to check 

whether all of its functions are operational. Before the simulation, 

a static analysis should be done to guarantee the correctness of 

syntax and semantic of the model. For this part, we use the 

simulator module of Telelogic Tau. In our model, we add a 

TransSend block, which sends 25 virtual transactions (every 

transaction is presented by a random number) to 4 nodes every 

minute. We only have to input a “Begin” signal to start the whole 

system. To ensure the validity of our Improved Byzantine Fault 

Tolerant Algorithm, we assume that Node1 is a bad node (which 

means Node1 always receive different transactions with other 3 

nods) and restart our simulation. 

We can observe a running fragment of the blockchain simulation. 

In the following we have an example in Figure 6. 

First, we observe the blockchain storage status of each node. We 

can see that every node has exactly the same storage status. Their 

blockchain length are all 7. (Transactions are so numerous that 

only part of the blockchain storage is shown below. We carefully 

compared the blockchain storage of these 4 nodes. The results 

show that they are all exactly the same. Besides, all these 7 blocks 

plus the genesis block are linked in chronological order by hash 

value).  

 
 

 
Figure 6. Simulation result. 

The simulation of Telelogic Tau can also generate MSC charts 

which clearly demonstrate the proper, deterministic, operations of 

the system including the input and output of signals, state 

transition, and whether or not the timer has overflowed. For 

reasons of space, we will not go into details here. 

4.2 Verification 
After modeling and simulation of the blockchain system, the static 

analyzer can find most of the static lexical and typing errors. 

However, it cannot find dynamic runtime errors such as deadlock, 

livelock, boundedness or state ambiguities, unreachable states. To 

this end, we use the verification tool of Telelogic Tau: Validator.  

When Validator is used to verify an SDL model, the whole SDL 

model is replaced by a behavior tree. In the behavior tree, one 

node represents one state of the model. The set of all states forms 

the state space. Since SDL is a model-checking formal language, 

the verification of SDL consists of the exploration and traversal of 

the state space. Telelogic Tau provides 6 methods of traversal: 

Bit-State, Random Walk, Tree-Walk, Tree-Search, Exhaustive, 
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Verify-MSC. The algorithm of Bit-State exploration is commonly 

used for large models. It uses a hash table to reduce the space 

during exploration. Figure 7 shows our verification result. From 

Figure 7, we can draw the following conclusions: 

1) Number of reports  

There are 12 reports which are all about warnings of a deadlock 

(These 12 warnings are all the same except for their sender and 

receiver). We can click on this report to check out the detailed 

error trace. 

From the MSC validator trace, we can extract the sequence of 

actions leading to the deadlock: if only one node can normally 

receive transactions while the other three cannot, the entire 

blockchain network will fall into a deadlock. This is what we did 

not take into account when we initially developed the 

crowdfunding private blockchain [7] system.   

 

Figure 7. Verification result. 

Except from these warnings, there are no other reports such as 

livelock, boundedness or state ambiguities. After we corrected this 

deadlock error, we re-simulated and validated the entire model 

and found no other errors. 

2) Collision risk 

The rate of collision risk is 0%. This shows the performance of 

the verification is good and the verification result is more reliable. 

3) Symbol coverage 

The rate of symbol coverage is 17.50%. Although it is far from 

100%, it is not a bad result considering that some process cannot 

be explored because the timer signals can-not be sent from the 

validator. 

Through the above analysis, we have optimized our blockchain 

model and have made the corresponding improvements to our 

source implementation. The benefits of formal verification for 

blockchain development has hence been fully demonstrated. 

5. CONCLUSION 
The blockchain system is a system that requires a high degree of 

security and robustness, safety. To this end, we have introduced a 

formal modeling and verification methodology for the 

development of blockchains. In this paper, we have proposed a 

hierarchical and modular modeling method using SDL. The 

simulation and verification of the blockchain model has been 

demonstrated to provide significant benefits to the safety and 

security of development.  

The application of formal methods can effectively in-crease the 

security and robustness of blockchain systems, improve the 

development automation level and shorten the development time. 

It can also help to define blockchain standards. Based on the 

above results, our next step will be to study different consensus 

algorithms for blockchains using SDL, study their performance, 

and verify them for reachability, deadlock, livelock, boundedness 

and state ambiguities. 
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