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a b s t r a c t 

Blockchain as a distributed computing platform enables users to deploy pieces of software (known as 

smart contracts) for a wealth of next-generation decentralized applications without involving a trusted 

third-party. The advantages of smart contracts do, however, come at a price. As with most technologies, 

there are potential security threats, vulnerabilities and various other issues associated with smart con- 

tracts. Writing secure and safe smart contracts can be extremely difficult due to various business logics, 

as well as platform vulnerabilities and limitations. Formal methods have recently been advocated to miti- 

gate these vulnerabilities. This paper aims to provide a first-time study on current formalization research 

on all smart contract-related platforms on blockchains, which is scarce in the literature. To this end, a 

timely and rigorous systematic review to examine the state-of-the-art research and achievements pub- 

lished between 2015 and July 2019 is provided. This study is based on a comprehensive review of a set 

of 35 research papers that have been extracted from eight major online digital databases. The results 

indicate that the most common formalization technique is theorem proving, which is most often used 

to verify security properties relating to smart contracts, while other techniques such as symbolic exe- 

cution and model checking were also frequently used. These techniques were most commonly used to 

verify the functional correctness of smart contracts. From the language and automation point of views, 

there were 12 languages (domain specific/specification/general purpose) proposed or used for the formal- 

ization of smart contracts on blockchains, while 15 formal method-specific automated tools/frameworks 

were identified for mitigating various vulnerabilities of smart contracts. From the results of this work, we 

further highlight three open issues for future research in this emerging domain including: formal testing, 

automated verification of smart contracts, and domain specific languages (DSLs) for Ethereum. These is- 

sues suggest the need for additional, in-depth research. Our study also provides possible future research 

directions. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

In 2008, Satoshi Nakamoto introduced the formal idea of

lockchain ( Nakamoto, 2008 ) as an infrastructural technology pow-

ring Bitcoin 

1 cryptocurrency. Since then, blockchain has made
∗ Corresponding author. 
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parizi1@kennesaw.edu (R.M. Parizi), q.zhang@ibm.com (Q. Zhang), 

aymond.choo@fulbrightmail.org (K.-K.R. Choo), adehghan@uoguelph.ca (A. De- 

ghantanha). 
1 https://bitcoin.org/en/ . 
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ts mark on a wide range of industrial domains such as Secu-

ity, Privacy, Finance, Cloud computing, Internet of Things (IoT)

nd many others. More recently, smart contracts ( Cuccuru, 2017 )

ave emerged as a new promising use case of the blockchain

idening its horizons and turning it into distributed computing

latform. Smart contracts are self-executing contracts where users

an codify their agreements and trust relations, which are then

tored on a hosting blockchain. Smart contracts can facilitate safe

nd trusted business activities by providing automated transactions

ithout the supervision of an external financial system such as

anks, courts, or notaries. These transactions are traceable, trans-

arent, and irreversible. The smart contracts are generally written

https://doi.org/10.1016/j.cose.2019.101654
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2019.101654&domain=pdf
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with domain-specific languages, such as Solidity 2 on Ethereum, 3 

Pact 4 on Kadena, 5 Liquidity 6 on the Tezos 7 platform to ease con-

tract programming. In some instances, general-purpose languages

such as Kotlin, 8 Go 9 and Java 10 are also used to write smart con-

tracts, mainly because of the familiarity and usability reasons for

the developers. 

Although smart contracts seem simple to be implemented and

understood, it is hardly ever the case in real-world situations as

we move forward to more scalable smart contracts in blockchain

2.0. Parizi et al. (2018) performed an empirical evaluation of Solid-

ity, Pact and Liquidity languages based on usability and security to

a new smart contract developer. The results of their experiments

suggested that, in terms of usability, Solidity is the most usable

language for a new developer to write smart contracts, but, when

it comes to security, new developers tend to write vulnerable con-

tracts with Solidity which may be used by malicious entities to

cause financial damages. One such infamous malicious attack took

place in June 2016, when the DAO (Decentralized Autonomous Or-

ganization) smart contract was manipulated to steal around 2 Mil-

lion (50 Million USD) Ether. The contract was vulnerable to reen-

trancy issues ( Liu et al., 2018 ), owing to which a recursive call was

made to the smart contract’s ‘splitDAO’ function for withdrawing

Ether when only one call was to be allowed according to the con-

tract specification. In another work, Atzei et al. (2017) provided

a summary and brief analysis of some infamous security vulner-

abilities of Solidity and the Ethereum platform. They introduced

and classified a taxonomy of causes of vulnerabilities on three

levels: Solidity, EVM and Blockchain. Additionally, the authors ac-

companied this taxonomy with actual attacks which exploit these

vulnerabilities. Similarly, Destefanis et al. (2018) provided a case

study of the Parity wallet incident which led to the freezing of

500 K Ether 11 (150 M USD) in 2017. The results from their analysis

showed that the incident was a consequence of poor programming

practices rather than the imperfections of the Solidity language it-

self. 

The above-mentioned studies and incidents show that both in-

experienced and experienced smart contract developers can often

write vulnerable smart contracts, which may be failure prone and

vulnerable to attack from malicious entities. Recognizing this chal-

lenge of writing safe and secure smart contracts, researchers from

both academic and industrial communities have recently started to

focus their attention on the use of formal methods for the verifica-

tion of smart contracts before they are deployed on the blockchain.

The process of formal verification involves proving a contract code

is correct for all inputs in its state space and hence, verifying that

the contract behaves according to its specification. This process is

generally performed using concrete specification languages to de-

scribe how the input and output of functions relate to each other.

The formal verification process is nothing new to software engi-

neering and is primarily used in designing safety-critical systems

such as aircraft and medical systems. However, its use has been

limited in other traditional industries due to the cost and time in-

volved in the proving and verification process. 

Therefore, to answer the obvious looming question, “Why do

we need to use formal methods in smart contracts verification? ”. It
2 https://solidity.readthedocs.io/ . 
3 https://www.ethereum.org/ . 
4 http://kadena.io/docs/Kadena-PactWhitepaper.pdf . 
5 http://kadena.io/ . 
6 https://github.com/OCamlPro/liquidity/blob/master/docs/liquidity.md . 
7 https://tezos.com/ . 
8 https://kotlinlang.org/ . 
9 https://golang.org/ . 

10 https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html . 
11 https://www.ethereum.org/ether . 
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s because (1) smart contracts are immutable, even though some

latforms such as Hyperledger Fabric 12 allow the smart contract to

e updated, one cannot just patch them easily if a bug or a vul-

erability surfaces in the future, (2) many smart contracts store

nd operate on valuable assets, and (3) smart contracts on pub-

ic blockchains are accessible from all over the world. This makes

hem very attractive for a malicious user to carry out attacks.

ence, formal verification is a strong approach that can reduce the

isk of bugs and vulnerabilities in a contract and can help prevent

alicious attacks in the future. 

The number of studies in formalization of smart contracts has

rown steadily in the recent years, but rigorous and formal stud-

es such as systematic reviews in the same domain are still in a

tate of infancy. In fact, to the best of our knowledge, our work is

he first systematic review in the field of smart contract formaliza-

ion to summarize state-of-the-art research and practice and helps

ransfer results to both educators and practitioners. The study re-

olves around a specific set of research questions (presented in

ection 3.1 ), which are then addressed via a thorough content anal-

sis of a large set of academic and professional studies. The specific

ontributions of this study are as follows: 

• Evaluation of the current formalization approaches for smart

contracts while highlighting the innovative approaches and

achievements in the domain. 
• Analysis of the most commonly researched issues and vul-

nerabilities related to smart contracts on blockchains in for-

malization approaches. 
• Review of Domain-Specific Languages (DSLs) and other for-

mal languages proposed to date in literature for the mitiga-

tion of vulnerabilities in smart contracts. 
• Overview of state-of-the-art tools and frameworks used for

formalizing smart contracts. 
• Identification of open issues, possible solutions to mitigate

these issues and future directions to advance the state of re-

search in the domain. 

The remainder of this paper is structured as follows:

ection 2 presents an overview of some of the related literature

eviews / surveys in the field of blockchains and highlights the gap

n blockchain research. Section 3 gives the research methodology

nd the whole process of paper exploration and selection as well

s threats to validity and limitations. Section 4 presents the results

nd the discussion with respect to research questions. In Section 5 ,

e discuss open issues and future directions to potentially solve

hese issues. Finally, Section 6 reports the conclusion. 

. Related literature reviews / surveys 

This section provides a brief overview of the state-of-the-art

econdary studies (i.e., those have review/survey nature) in the

teadily growing domain, blockchain-based systems and highlights

he gap in blockchain research, i.e. smart contract formalization

the summary of all related works in the area of blockchain smart

ontracts and formal methods are given in Appendix A ). 

Yli-huumo et al. (2016) conducted a systematic literature re-

iew (SLR) in order to determine what current research was pub-

ished in relation to the general concept of blockchain technol-

gy. They excluded legal, economic and regulatory research from

heir review and focused on the technical blockchain papers; they

ound an 80% focus on Bitcoin projects and in particular a com-

on theme of security and privacy. Since 2016 the applications for

lockchain have diversified and as such our research looks to es-

ablish what research exists specifically in regard to cybersecurity

nd blockchain applications. 
12 https://www.hyperledger.org/projects/fabric . 

https://solidity.readthedocs.io/
https://www.ethereum.org/
http://kadena.io/docs/Kadena-PactWhitepaper.pdf
http://kadena.io/
https://github.com/OCamlPro/liquidity/blob/master/docs/liquidity.md
https://tezos.com/
https://kotlinlang.org/
https://golang.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
https://www.ethereum.org/ether
https://www.hyperledger.org/projects/fabric
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Fig. 1. Attrition of paper throughout the selection process. 

 

S  

i  

h  

t

 

h  

s  

i  

c  

o  

r  

a

 

w  

i  

g  

f  

t  

e  

d

 

l  

t  

i  

t  

h  

r  

fi  

c  

O  

c  

i  

r  

c  

t  

r

3

 

t  

t  

C  

a  

d  

a  

b  

q

3

 

s  

t

 

 

 

 

 

 

t  

m  

a  

p  

w  

p  

fi

3

 

s  

w  

t  

t  

i  

o

 

d  

t  

d  

f

3

 

s  

l  

“  

s  
Towards the end of 2016, Conoscenti et al. (2016) conducted an

LR concerning the use and adaptability of blockchain specifically

n relation to IoT and other peer-to-peer devices. Interestingly, they

ighlighted that the blockchain could be used for data abuse detec-

ion without the need of a central reporting mechanism. 

Seebacher and Schüritz (2017) provided an SLR in 2017 that

ighlighted blockchain was increasingly more impactive on service

ystems. The results of their SLR suggests that blockchain plays an

ntegral role in the functioning of a service system. Blockchain fa-

ilitates co-creation of value, ensures information availability and

ffers coordination mechanism in such systems. The authors also

ecommended conducting large scale empirical study of real-world

pplications for the future of research in the area. 

Most recently in 2018, Reyna et al. (2018) surveyed relevant

orks to identify current challenges and aspects of improvement

n the integration of blockchain and IoT domains. Their survey sug-

ests that the current state of integration of the two technologies

ace six challenges namely: scalability, security, privacy, smart con-

racts, legal issues and consensus. Additionally, they provided an

valuation to highlight the benefits of using blockchains with IoT

evices. 

All the previous studies mentioned above answer questions re-

ating to various aspects of the blockchain technology and its in-

egration with other fields, but do not look specifically in mitigat-

ng smart contracts’ vulnerabilities and issues using formulariza-

ion approaches. The field of research in relation to the blockchain

as a relatively brief history, but smart contracts issues and secu-

ity have received lesser attention. Hence, our work provides the

rst SLR that focuses on the formalization approaches of smart

ontracts for the improvement of correctness and vulnerabilities.

ur work is based on a well-defined systematic protocol for the

ollection of all relevant works proposed in the literature since the

nception of this new domain. We provide an analysis of the cur-

ent research interests and areas in the academic and professional

ommunities. Additionally, the work presented in this paper iden-

ifies current open issues and research gaps to shift the focus of

esearchers towards them as they require well-deserved attention. 

. Research methodology 

A SLR is based on the identification, evaluation and interpreta-

ion of all available research relevant to one or more research ques-

ions or a topic of interest ( Kitchenham, 2004 ; Kitchenham and

harters, 2007 ). Such studies are conducted based on a search and

 review protocol, which describes the research questions to be ad-

ressed among other things such as the procedures for searching

nd identifying relevant research works and defining the process

y which the data collected are synthesized to answer the research

uestions and achieve the goals of the review. 
.1. Research questions 

Along with the motivation and the main stated objective, this

tudy specifically aims to answer the research questions (referred

o as RQ’s) mentioned below: 

• RQ1 : What formal methods and techniques are used for the

verification and improvement of smart contracts? 
• RQ2 : Which issues or vulnerability aspects of smart con-

tracts do formalization approaches target? 
• RQ3 : How do formalization approaches mitigate issues and

vulnerabilities in smart contracts? 
• RQ4 : What domain specific languages (DSL) or

formal/specification/general-purpose languages are pro- 

posed/used for formalizing smart contracts? 
• RQ5 : What automated tools and frameworks are proposed

in supporting state-of-the-art formalization approaches of 

smart contracts? 

To answer these questions, we designed a systematic protocol

o search and identify all the related works in the domain of for-

alization approaches of smart contracts published between 2015

nd July 2019. We have defined the search string used to select the

rimary studies based on our RQ’s. In the subsequent sub-sections,

e describe the different steps that we took to search, identify and

urify the relevant works for our study for which we have also de-

ned the set of inclusion/exclusion criteria. 

.2. Inclusion and exclusion criteria 

To ensure that the collected relevant works aligned with our

ystematic review, we defined several criteria to determine the

orks that would be considered and the ones that were outside

he scope of this review. For a work to be considered for this sys-

ematic review, it must be a relevant work in the field of formal-

zation of smart contracts on blockchains and must be present in

ne of the online databases mentioned in Fig. 1 . 

In addition to being published in one of the above-mentioned

atabases, each work had to satisfy all the inclusion criteria men-

ioned in Table 1 . On the other hand, the exclusion criteria were

esigned to determine the works that were considered irrelevant

or this review. These criteria are also mentioned in Table 1 . 

.3. Search strategy and pruning process 

After we identified the online digital libraries (See Fig. 1 ) to

earch for relevant works, we started the identification and col-

ection of relevant works. We first identified what we called the

preliminary set of works”. To identify and collect the preliminary

et of works, we performed string and manual keyword searches
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Table 1 

Inclusion and exclusion criteria for relevant works. 

Inclusion Criteria Exclusion Criteria 

Be published online from 2015 to July 2019. white papers, editorial comments and book reviews 

Studies are in the field of smart contracts and blockchains Studies that present surveys and review papers 

Studies offer technical quality method in the formalization of smart contracts Studies that are not published in English 

Studies that are available in technical archives or have a peer-review procedure Studies not par with current technical quality aspects 

Fig. 2. Yearly and publication trend. 
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on the identified digital libraries. The results from these searches

are summarized in Fig. 1 , which shows the total number of pre-

liminary studies acquired from each digital database. 

Once we identified the initial set of 6263 research papers, we

started the pruning process, i.e. discarding the works which were

unrelated to the goals of this research. We applied four stages of

pruning to the preliminary set of works to obtain the initial set of

works for this review, these pruning stages are briefly described

below: 

1 Duplicates deletion: removal of duplicate studies 

2 Keyword pruning: filtering studies based on a list of rele-

vant keywords 

3 Title pruning: filtering based on the title of the work 

4 Abstract pruning: filtering based on abstract of the work 

Fig. 1 highlights our pruning process and shows the number of

papers selected at each stage the initial set of works. To obtain

the final set of relevant works , we conducted a quality assessment

of all the initial 28 works (which we obtained after applying all

the pruning stages). At this stage, we carefully read all 28 papers

gathered up to this point and then, performed a snowballing pro-

cedure. We paid keen attention on the bibliographical references

and ‘‘Related Work’’ section of all the initial set of studies. This

was done to collect new studies that might have been missed in

the collection of the initial set of works. Here, our aim was to: 1)

make sure that the new works assembled complied with the inclu-

sion criteria defined in Section 3.2 , and 2 ) the new works collected

complimented the list of initial set of 28 works. 

Hence, reading through all the initial set of works, we rec-

ognized an additional 7 papers to complement the initial set of

works ultimately, providing us with the final set of 35 related

works for this SLR (See references ( Hirai, 2017 ; Amani et al.,

2018 ; Le et al., 2018 ; Bhargavan et al., 2016 ; Bigi et al., 2015 ;

Abdellatif and Brousmiche, 2018 ; Bai et al., 2018 ; Kalra et al., 2018 ;

Chaudhary et al., 2015 ; Kim and Laskowski, 2017 ; Dennis et al.,

2016 ; Breidenbach et al., 2017 ; Kosba et al., 2016 ; Matsuo, 2017 ;

Luu et al., 2016 ; Tsankov et al., 2018 ; Mueller, 2018 ; Zhou et al.,

2018 ; Nikolic et al., 2018 ; He et al., 2018 ; Scoca et al., 2017 ;
iryukov et al., 2017 ; Mavridou and Laszka, 2018 ; Ellul and

ace, 2018 ; Idelberger et al., 2016 ; Sergey and Hobor, 2017 ;

iao et al., 2017 ; Pîrlea and Sergey, 2018 ; Grishchenko et al., 2018 ;

erezo Sánchez, 2017 ; Zhang et al., 2016 ; Hildenbrandt et al., 2018 )

nd ( O’Connor, 2017 ; Grossman et al., 2018 ; Sergey et al., 2018 )). A

rief summary of all the relevant studies (i.e. final set of works)

as been provided in Appendix A . 

Fig. 2 shows the number of studies published each year since

015 concerning formalization of smart contracts. The figure sug-

ests the domain is growing rapidly ever since the inception of

he idea. This rapid growth in studies is a direct consequence of

he recent financial damages caused by either malicious attacks on

mart contracts or inadvertent bugs that froze funds by producing

nexpected irreversible results. The figure also shows the relevant

tudies found in each online database. 

.4. Limitations and threats to validity 

SLRs may suffer from some threats to the validity and well-

nown limitations that we discuss in this section, alongside the

easures taken to minimize their impact on the results of this re-

iew. 

Possibility of bias in relevant work search : The inclusion of all

he relevant work for this systematic review is hard to guaran-

ee. There exists a small chance that some studies that were rele-

ant for this review might have been excluded inadvertently based

n the search criteria defined in Section 3 . Hence, to mitigate this

hreat, searches were performed in popular and reputable confer-

nces, workshops, and journals both manually and automatically,

eeping in check with the critical references listed in the initial set

f works to make sure no additional studies were excluded from

he final set of works. 

Data extraction procedure limitations : We discovered a few dif-

culties in extracting data from the set of relevant works for this

LR. In some cases, the information provided in the relevant works

ad to be subjectively interpreted as not all of them provided ex-

licit information that would help us in directly answering our re-

earch questions (RQs). For instance, some of the relevant works
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Fig. 3. The formal techniques used to improve smart contracts. 
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13 http://spinroot.com/spin/whatispin.html . 
14 http://www.uppaal.org/ . 
15 https://www.tutorialspoint.com/software _ testing _ dictionary/symbolic _ 

execution.htm . 
id not mention the technique, methodology, technology or the

ool used for the formalization or improvement of smart contracts

n blockchains. 

. Results and discussion 

In this section, we present the results based on the analysis of

ll the relevant work to answer the research questions outlined in

ection 3.1 . 

.1. RQ1: What formal methods and techniques are used for 

erification and improvement of smart contracts? 

It is important to emphasize that at least some degree of for-

alization takes place for the verification or improvement of smart

ontracts in all the studies selected and analyzed in this work. Sev-

ral papers discuss more than one formalization technique. Keep-

ng this in mind, our observations drew out 9 major formalization

pproaches which are discussed below: 

Theorem Proving, is a formal method of providing proofs in sym-

olic logic utilizing deductive inference. In this approach, each step

n the proof introduces an axiom or a premise and provides a

tatement which is a natural consequence of the previously estab-

ished results using legitimate rules of inference. Theorem prov-

ng was the most typical way of formalizing smart contracts. Of

ll studies under evaluation, there were 11 (31%) papers dedicated

o the theorem proving technique. Some of the studies that uti-

ize theorem proving formalization approaches are ( Hirai, 2017 ;

mani et al., 2018 ; Le et al., 2018 ). This formalization approach is

sed to prove various security properties that can greatly improve

he reliability of smart contracts. Fig. 3 provides a breakdown of

he formal techniques used for the improvement (i.e. outsmarting)

f smart contracts. 

Model checking (also known as Property Checking ) is the process

f checking whether a given finite-state model of a system behaves

ccording to its formal specification or correctness properties. This

echnique was the second most used approach (mentioned in 6

17%) relevant works), which is most commonly used in studies

o verify important properties and correctness of smart contracts

 Bhargavan et al., 2016 ; Bigi et al., 2015 ; Abdellatif and Brous-

iche, 2018 ; Bai et al., 2018 ), and ( Kalra et al., 2018 ). Model check-

ng approach has also been used for the verification of blockchain

onsensus protocol correctness ( Chaudhary et al., 2015 ). Interest-

ngly, we found that all the papers that proposed this approach of

ormalization have used an automatic model checking tool to verify

he correctness and important properties of smart contracts. Some
f the used model checkers in the relevant works are SPIN, 13 UP-

AAL, 14 and SMC ( Legay et al., 2010 ) (Statistical Model Checking)

ools. 

Formal Modelling is the technique in which a system is de-

igned using precise statements or components, these statements

efine each relationship between all components of a system re-

ulting in 1) unambiguous communication, and 2) replicable re-

ults after following a series of steps. Formal Modelling was the

hird most common approach used for formalizing smart con-

racts and was mentioned in 5 (14%) relevant works ( Kim and

askowski, 2017 ; Dennis et al., 2016 ; Breidenbach et al., 2017 ;

osba et al., 2016 ; Matsuo, 2017 ). Formal modelling technique is

sed to provide solutions to multiple challenges faced by smart

ontracts and blockchains such as scalability, privacy, providing bug

ounties, etc. These aspects of smart contracts and blockchains are

iscussed in further detail in Section 4.2 (RQ2). 

Symbolic execution is a software testing technique that aids test

ata generation and proofs regarding the quality of a program. 15 

his technique was also mentioned in 5 (14%) relevant works, and

t was observed as the most preferred approach in providing a

ackbone to studies that propose static analysis and verification

ools [28, 29, 30, 31, and ( Nikolic et al., 2018 ). These analysis re-

ults were achieved by the identification and verification of various

angerous patterns which may leave a smart contract vulnerable to

ailure or attack by malicious entities. 

The remaining 8 (24%) papers reviewed and analyzed propose

he following formalization approaches of smart contracts: 1) for-

al specification languages which are the programming languages

ased on formal specification (a technique to describe a behav-

or or system in terms of precise mathematical statements) such

s SPESC ( He et al., 2018 ), dSLAC ( Scoca et al., 2017 ) and Findel

 Biryukov et al., 2017 ) for developing smart contracts; 2) Finite

tate Machine (which is a technique in which a system is math-

matically defined as an abstract machine that can be in one

tate out of a finite number of states at any given time. These

achines can change state based on external inputs) based ap-

roach (FSM) that has been used to support automatic code gen-

ration tools and to provide security plugins and implement com-

on design patterns for the safety and reliability of smart con-

racts ( Mavridou and Laszka, 2018 ) and to verify the runtime safety

http://spinroot.com/spin/whatispin.html
http://www.uppaal.org/
https://www.tutorialspoint.com/software_testing_dictionary/symbolic_execution.htm
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Fig. 4. The issues and vulnerability aspects of smart contracts tackled by formalization approaches. 
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and verification of Ethereum smart contracts ( Ellul and Pace, 2018 );

3) Logic based approach ( Idelberger et al., 2016 ) (proving the ro-

bustness of a system based on formal logic) which was used to

provide results suggesting that logic based languages have the po-

tential to accompany common scripting languages for develop-

ing smart contracts. 4) Formal reasoning (which is an approach

to draw out conclusions based on logical and deductive reason-

ing based on one or more premises) approach that was used to

explore similarities between classical problems of shared-memory

concurrency and multi-transactional behavior of Ethereum smart

contracts ( Sergey and Hobor, 2017 ). Finally, 5) behavioral model-

ing ( Liao et al., 2017 ) (“Behavioral models 16 describe the internal

dynamic aspects of an information system that supports the busi-

ness processes in an organization. During analysis, behavioral mod-

els describe what the internal logic of the processes is without

specifying how the processes are to be implemented”) which was

used in an approach to propose a platform that supports Behavior-

Driven Development (BDD), deployment and testing of smart con-

tracts for the Ethereum platform. 

4.2. RQ2: Which issues or vulnerability aspects of smart contracts do 

formalization approaches target? 

It is important to keep in mind that most of the papers se-

lected for this review discuss and mitigate more than one issue

or vulnerability aspect of smart contracts. Hence, we will answer

this research question based on the primary vulnerability mitiga-

tion focus of each paper. Fig. 4 provides a breakdown of all the is-

sues or vulnerability aspects of smart contracts tackled by formal-

ization approaches. These issues and vulnerabilities are classified

into seven categories namely: Contract functionality verification, pri-

vacy, security, scalability, bug bounty, trustworthy data feeding, and

blockchain consensus protocol correctness . 

The most common vulnerability aspect of smart contracts that

are targeted by formal verification approaches was contract func-

tionality verification , e.g., does the smart contract offer the exact

functionality that it is designed or programmed for? Are there

loopholes or dangerous boundary conditions that may produce un-

expected results? We found that 23 (65%) of the studies had fo-

cused on contract functionality verification aspect of smart con-

tracts. Some of these studies are ( Mueller, 2018 ; Luu et al., 2016 ;

Tsankov et al., 2018 ; Le et al., 2018 ; Mavridou and Laszka, 2018 ). 
16 https://www.oreilly.com/library/view/systems-analysis-and/9781118037423/ 

11 _ chapter006.html . 

o  

2  

o  

b  
The second most discussed issue related to smart contracts is

ecurity . We found 6 (17%) relevant works that discuss various

ecurity-related issues with smart contracts on blockchains, these

orks are ( Matsuo, 2017 ; Pîrlea and Sergey, 2018 ; Le et al., 2018 ;

hou et al., 2018 ; Sergey and Hobor, 2017 ) and ( Grishchenko et al.,

018 ). The security issues highlighted in these papers are de-

cribed as follows: Matsuo ( Matsuo, 2017 ) proposes an innova-

ive approach for the application of formal analysis and verifica-

ion by considering implementation, protocol, and language lay-

rs of a blockchain based system. Pirlea and Sergey ( Pîrlea and

ergey, 2018 ) present a formal model of a distributed blockchain-

ased consensus protocol and mechanically prove the protocol’s

ventual consistency. Le et al. ( Le et al., 2018 ) define the input con-

itions for which a smart contract terminates (or does not termi-

ate) by proving conditional termination and non-termination stat-

cally. Zhou et al. ( Zhou et al., 2018 ) introduce a method to detect

otential security risks in smart contract programs with the help

f Syntax topology analysis of smart contract invocation relation-

hip and Detection and location of logical risks. Sergey and Ho-

or ( Sergey and Hobor, 2017 ) explore similarities between classical

roblems of shared-memory concurrency and multi-transactional

ehavior of Ethereum smart contracts. They also introduce im-

roved practices with the application of formal verification tech-

iques for developing smart contracts. Finally, Grishchenko et al.

 Grishchenko et al., 2018 ) give the formal definition of several se-

urity properties for smart contracts. 

Privacy was the third most discussed issue related to smart

ontracts. There were 2 (6%) studies which discuss issues re-

ated to privacy. Kosba et al. ( Kosba et al., 2016 ) highlight the is-

ue of transactional privacy in existing blockchain based systems

nd in turn propose the ‘Hawk’ decentralized smart contract sys-

em, which does not store the financial transaction publicly on

he blockchain hence, providing transactional privacy. Similarly,

ánchez ( Cerezo Sánchez, 2017 ) proposes ‘Raziel’ which provides

rivacy, verifiability and correctness guarantees of smart contracts.

he author introduces ways in which Zero-Knowledge Proofs of

roofs or Proof-Carrying program certificates can be used to prove

he validity of smart contracts before execution to other parties in

 private manner. 

Other issues that were discussed in the relevant works are

elated to scalability, bug bounties, trustworthy data feeding and

lockchain consensus protocol correctness . Each of these issues has

nly been addressed in 1 relevant work. Dennis et al. ( Dennis et al.,

016 ) introduced and provided a solution for the scalability issue

f blockchain based systems by proposing a constant fixed size

lockchain called “rolling blockchain”. They showed that the dele-

https://www.oreilly.com/library/view/systems-analysis-and/9781118037423/11_chapter006.html
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Fig. 5. Mapping of the relevant works based on RQ1 and RQ2. 
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ion of data from the proposed model of this blockchain does not

ffect its security as compared to traditional blockchains. When it

omes to bug bounties, Breidenbach et al. ( Breidenbach et al., 2017 )

ntroduced the Hydra Framework to incentivize honest disclosures

f bugs and vulnerabilities in smart contracts. In case of trust-

orthy data feeding to smart contracts, Zhang et al. ( Zhang et al.,

016 ) proposed Town Crier which acts as a link between existing

ommonly trusted non-blockchain based websites and smart con-

racts to provide authenticated data to smart contracts. And finally

hen it comes to the blockchain consensus protocol correctness

ssue, Chaudhary et al. ( Chaudhary et al., 2015 ) introduced the po-

ential problem of double spending in Bitcoin and the lack of a

hird party to guard against the problem. 

.3. RQ3: How do formalization approaches mitigate issues and 

ulnerabilities in smart contracts? 

To provide a more taxonomic analysis, we further mapped out

he results from RQ1 and RQ2. This particular analysis was aimed

o provide a clearer perspective on all the studies based on the

ormalization approach they utilize and the issues or vulnerability

spects they mitigate. The results are shown in Fig. 5 . As it can be

een from the figure, 1) all formalization techniques mentioned in

Q1 except for formal reasoning were used for the smart contract
unctionality verification. 2) Theorem proving, Symbolic Execution,

ormal modeling and formal reasoning were used to improve se-

urity aspect of smart contracts. 3) Theorem proving, and formal

odeling were used to improve privacy of smart contracts. 4) for-

al modeling was used to improve scalability of blockchains and

dminister bug bounties. 5) Theorem proving was used to propose

 way to provide trustworthy data from websites to smart con-

racts and finally, 6) Model checking was used to verify blockchain

onsensus protocol correctness. 

We now discuss how each formalization technique (identified

n RQ1) was used to mitigate each of issue and vulnerability (iden-

ified in RQ2) in the smart contract domain. This analysis is struc-

ured as follows, we examine each smart contract issue or vulnera-

ility in its own separate and specific sub-section (i.e. sub-sections

 - G). In each sub-section, we will discuss which formalization

echniques were used in what manner to mitigate that issue or

ulnerability. 

.3.1. Contract functionality verification 

The functional correctness of software is defined as the ability

f the software to produce an output for a specific input as spec-

fied by the functional requirements of that software. Hence, it is

airly intuitive to understand the meaning of functional correctness

f smart contracts. It is the ability of a smart contract to produce
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an output as governed by its specification for each input from a

set of all possible inputs for that smart contract. In our analysis

we found smart contract functionality verification to be tackled by

the all formal techniques accept formal reasoning . We found con-

tract functionality verification to be the most researched area in

terms of smart contract issues and vulnerabilities as it attracted re-

searchers from the most diverse background of formalization tech-

niques. 

Theorem proving is used by studies to 1) propose KEVM

( Hildenbrandt et al., 2018 ), an executable formal specification of

the EVM’s bytecode stack-based language built with the K Frame-

work. The KEVM was designed to provide a backbone for rigorous

formal analysis of smart contracts. 2) Provide the definition of EVM

in Lem ( Hirai, 2017 ), which is a language that can be compiled for

several known theorem provers. Using the provided definition, the

author provided proofs for several safety properties of Ethereum

smart contracts in Isabelle/HOL theorem prover. 

Symbolic execution was used to build a backbone for tools such

as 1) SASC, which is a static analysis tool that can find potential

logic risks and generate topological charts of invocation relation-

ships and 2) MAIAN, Oyente, Mythril and Securify to analyze smart

contracts for potentially dangerous patterns which are exploitable

by malicious users. The tool utilizes symbolic analysis and concrete

validator to exhibit real vulnerabilities. Model checking have been

used in studies such as ( Bai et al., 2018 ) generating smart con-

tract models. A model verification tool can be used to verify im-

portant properties and correctness of smart contracts. A case study

was presented with the help of a famous model checking tool SPIN

to illustrate the verification process and effects. 

Formal modeling was used to ( Kim and Laskowski, 2017 ) state

principles regarding the possible evolution of smart contracts on

blockchains, including: 1) Blockchains, whilst reducing the uncer-

tainty of value exchange can also increase complexity from hav-

ing to subsume work from third parties; 2) Smart contracts can

be used to decrease the complexity arising from eliminating third

parties with the use of blockchain; 3) The evaluation of smart

contract models of several parties lowers uncertainty of value

exchange whilst increasing transparency. Additionally, the study

also emphasizes the use of formal models (mathematical, logical,

or simulation-based) which can also increase transparency when

evaluating or interpreting smart contracts of different parties. 

Finite state machines were used to ( Ellul and Pace, 2018 )

demonstrate that standard techniques for runtime verification of

smart contracts, including a stake-based instrumentation technique

which ensures that the violating party provides insurance for cor-

rect behavior. Idelberger et al. ( Idelberger et al., 2016 ) outline the

technical and legal disadvantages of logic-based smart contracts in

regards of usual activities featuring ordinary contracts. The authors

provide guidelines towards usage of such logic based smart con-

tracts on blockchain based systems. 

Scoca et al. ( Scoca et al., 2017 ) introduce a formal specifica-

tion language that can be used to specify interactions between re-

quests and offers. The paper also presents an approach for the self-

governed negotiation of smart contracts, which is used to analyze

the cost and the necessary changes required to reach an agree-

ment. Finally, Liao et al. ( Liao et al., 2017 ) introduce a platform

that supports Behavior-Driven Development (BDD) , deployment and

testing of smart contracts for the Ethereum platform. The objec-

tive of the platform is to provide and resolve cross-cutting con-

cerns across smart contract development life cycle. 

4.3.2. Security 

Security of a smart contract refers to its robustness against at-

tacks from malicious users. It is important to keep in mind that the

security of a smart contract tightly coupled to its correctness and

blockchain consensus protocol. In our analysis we found that there
ere four formalization approaches used to improve the security

uarantees of a smart contract. 

Sergey and Hobor ( Sergey and Hobor, 2017 ) explore similar-

ties between classical problems of shared-memory concurrency

nd multi-transactional behavior of Ethereum smart contracts with

he help of formal reasoning . They examine and analyze two exam-

les from the Ethereum blockchain based on “how they are vulner-

ble to bugs that are closely reminiscent to those that often occur

n traditional concurrent programs”. This description of contracts-

s-concurrent-objects provides a deeper knowledge of potential

mart contract threats. The results also introduce improved prac-

ices with the application of formal verification techniques for de-

eloping smart contracts. 

Formal modelling technique was utilized by Matsuo

 Matsuo, 2017 ) for the application of formal analysis and ver-

fication by considering technology layers of blockchain-based

ystems and their security concerns. These layers are identified

s, implementation, protocol, and language. Symbolic Execution

as utilized by Zhou et al. ( Zhou et al., 2018 ) to propose a static

nalysis tool called SASC for smart contract logic analysis and

eneration of topological invocation relationship diagrams. 

Theorem proving was used by Pîrlea and Sergey ( Pîrlea and

ergey, 2018 ) to introduce several theorems regarding pure func-

ional implementation of block forests. The authors work is based

n several primitive security features like, hash-functions, a no-

ion of a proof object, a Validator Acceptance Function, and a Fork

hoice Rule. Furthermore, the authors characterize their assump-

ions regarding these components to prove the consensus of the

lobal system. Theorem proving was also utilized by Grishchenko

t al. ( Grishchenko et al., 2018 ) to provide initial semantics of EVM

ytecode formalized in F ∗ proof assistant. Le et al. ( Le et al., 2018 )

etermined the input conditions for which a smart contract ter-

inates (or does not terminate) by proving conditional termina-

ion and non-termination statically. This is done by making sure

hat both, current state of the smart contract and the contract’s

nput satisfy the termination condition to run on a proof carrying

lockchain before the actual execution of the contract. 

.3.3. Privacy 

Private smart contracts on blockchains allow disparate parties

o transact amongst themselves without having to reveal the terms

f their contract or their transactions on the blockchain to the pub-

ic. In our analysis we found two papers that focused mainly on

rivacy. The way in which these papers improve privacy using for-

al techniques are discussed below: 

Hawk ( Kosba et al., 2016 ), which is a decentralized system for

mart contracts is based on the formal modeling technique that

rovides transactional privacy by not storing financial transactions

n the clear on the blockchain. Hawk allows intuitive development

f private smart contracts without requiring the implementation

f cryptography. The platform’s compiler automatically generates

ryptographic protocol wherever the parties bound by contract in-

eract with the blockchain. This is achieved with the help of zero-

nowledge proofs ( Sah et al., 2016 ). 

Raziel is backed by the theorem proving formalization technique

 Cerezo Sánchez, 2017 ). It provides privacy, verifiability and cor-

ectness guarantees of smart contracts by combing proof carry-

ng programs and secure multi-party computations. The paper also

emonstrates the ways in which Zero-Knowledge Proofs of Proofs

r Proof-Carrying program certificates can be used to prove the va-

idity of smart contracts before execution to other parties in a pri-

ate manner. 

.3.4. Scalability 

Scalability for any system can be defined as its capability to

row in size and manage increased demands by its users. The core
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roblem surrounding blockchain networks is scalability in terms

f its limitations on the amount of transactions that it can pro-

ess. Public blockchains such as Ethereum and Bitcoin suffer from

his problem as Ethereum network can process approximately 15 –

5 transactions per second and the Bitcoin network performs even

orse with the capability of processing approximately 3 −7 trans-

ctions per second. Traditional centralized financial systems such

s VISA can process over 1500 transactions per second which is

ignificantly more than these public blockchains. Hence, in order to

ompete with such centralized financial systems blockchains need

o be scalable both in terms of handling network load and process-

ng transactions. 

In our analysis we found only one relevant work which at-

empted to solve the blockchain scalability issue with the help

f formal modelling. Dennis et al. ( Dennis et al., 2016 ) proposed

 solution for the improving the scalability blockchain networks.

he authors propose a constant fixed size blockchain model called

rolling blockchain” which may solve the problem of exponential

rowth of blockchain networks by removing outdated information

rom the blockchain. They also presented a formal analysis of this

roposed blockchain model, the results of which suggest that the

eletion of data from the proposed model of the blockchain does

ot affect its security when compared to traditional blockchains.

he provided solution might work for private blockchain networks

ut, it is hard ot visualize this proposal as a viable solution for

ublic blockchains as deleting data from such blockchains might

esult in consensus failure and an eventual hard fork of the net-

ork. 

.3.5. Bug bounty 

There have been several instances when vulnerabilities in smart

ontracts have been exploited by malicious users to gain finan-

ial advantage ( Atzei et al., 2017 ). It is highly unlikely that a soft-

are, whether centralized, decentralized or distributed would be

mmune from any kind of security vulnerability. Recent research

 Berger et al., 2016 ) and major centralized corporations such as

oogle and Facebook have shown that incentivizing the public for

ug disclosure could be great way of reducing damages, costs and

ulnerability patching times when a security vulnerability eventu-

lly surfaces. This process of incentivizing bug disclosure is known

s bounty hunting or bug bounty . 

In our analysis we found one relevant study that focused on

ormally modelling a framework (Hydra ( Breidenbach et al., 2017 ))

or incentivizing bug and vulnerability disclosures in smart con-

racts. The framework is based on a program transformation that

nables bug detection at runtime. The study also formally demon-

trates that Hydra contracts incentivize bug disclosure, for bounties

rders of magnitude below an exploit’s value. Finally, he authors

odel strong bug-withholding attacks against on-chain bounties,

nd analyze Submarine Commitments, a generic defense to front-

unning that hides transactions in ordinary traffic. 

.3.6. Trustworthy data feeding 

With theorem proving formalization technique as its backbone,

hang et al. ( Zhang et al., 2016 ) introduced Town Crier (TC) which

s a tool that can act as a link between existing commonly trusted

on-blockchain based websites and smart contracts. It utilizes a

ombination of a trusted hardware back-end and a blockchain

ront-end to provide trustworthy and authenticated data to smart

ontracts from HTTPS enabled websites. 

.3.7. Blockchain consensus protocol correctness 

Being decentralized networks, blockchain nodes must reach an

greement regarding the state of a blockchain at any given time.

his process of reaching an agreement is also known as consensus
nd is usually governed by sophisticated protocols such as Proof-

f-Work in public blockchains such as Bitcoin and Ethereum. Given

uch complications, blockchain protocols may suffer from consen-

us attacks such as Byzantine General’s attack, 51% attack etc. A

lockchain consensus protocol must be resistant to such consensus

ttacks to maintain the integrity of the network. 

Hence, as per our analysis only one study focused on verifying

he correctness of blockchain consensus protocol with the help of

tatistical model checking . Chaudhary et al. ( Chaudhary et al., 2015 )

nvestigated the Bitcoin protocol correctness and provide its for-

alization as a UPPAAL model. This study is inspired by the idea

f double spending in Bitcoin and the lack of a third party to guard

gainst the problem. The phenomena of double spending can take

lace if a user could prove to the majority that the blockchain

ithout his previous payment is legitimate. The authors demon-

trated that a malicious pool can overwhelm the computational

ower of the network and race against it to include a malicious

etwork in the longest proof-of-work chain. The authors, with the

elp of statistical model checking also suggest that the probability

f such attacks occurring on the Bitcoin network depends on the

umber of confirmations. A limitation of the paper could be the

nvestigation of the double spending problem with different hash-

ates. 

.4. RQ4: What domain specific languages (DSL) or 

ormal/specification/general-purpose languages are proposed/used for 

ormalizing smart contracts? 

There were 13 (39%) relevant works that either propose a

omain-specific/specification language or use a formal language for

ormalizing smart contracts. These studies are listed in Table 2

long with the language proposed/used for the formalization pro-

ess. 

12 out of the 13 papers presented in the table focus on con-

ract functionality verification. Formal and specification languages

uch as Simplicity ( O’Connor, 2017 ), SPESC ( He et al., 2018 ), Findel

 Biryukov et al., 2017 ), SCILLA ( Sergey et al., 2018 ) and dSLAC

 Scoca et al., 2017 ) were designed for formal verification and vali-

ation of smart contracts. These languages verify several functional

nd security properties that make certain bugs and vulnerabilities

irtually impossible. 

The F ∗ programming language was mentioned in 2 relevant

orks. In fact, it is the only programming language that was men-

ioned more than once in all the related works collected for this

eview. F ∗, which is built for formal verification of programs, was

sed to verify security properties at the source code and Byte-

ode level ( Bhargavan et al., 2016 ). Additionally, the F ∗ proof as-

istant was also used to provide the initial semantics of the EVM

 Grishchenko et al., 2018 ). 

ETHERLITE ( Luu et al., 2016 ) was proposed as a distilled con-

ersion of Ethereum’s EVM and Securify language ( Tsankov et al.,

018 ) was used to power the Securify tool and define security

atterns against which smart contracts were statically analyzed.

ROMELA ( Bai et al., 2018 ) was used for describing smart con-

racts which were later verified with SPIN model checking tool.

em ( Hirai, 2017 ), a language that can be compiled for several

nown theorem provers, was used to formally define all EVM in-

tructions and prove safety properties of smart contracts. SMAC

 Grossman et al., 2018 ) was used to provide theoretical develop-

ent for contracts to detect Effective Callback Freedom. 

Now moving on to the other side of the spectrum, the B lan-

uage was the only one discussed in the relevant works that was

ot used to solve any code functionality verification issue. The

 language was utilized to formally model a “rolling blockchain”

o solve the scalability issues ( Dennis et al., 2016 ) in traditional

lockchains. 
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Table 2 

Summary of the languages used/proposed in relevant works. 

Ref. Language 

proposed/used 

Description of the language 

( Dennis et al., 2016 ) B language B is an interpreted programming language which is an ancestor of the widely known C programming language and 

a descendent of BCPL (Basic/Bootstrap Combined Programming Language). B was built for system development 

instead of numeric computations. The only datatypes that B supports is a “word”, which is used as both as integer 

and as memory address for dereferencing. 

( Bai et al., 2018 ) PROMELA PROMELA (Process or Protocol Meta Language) is a modelling language meant for formal verification. PROMELA 

models are often analyzed with model checkers such as SPIN to verify correct system functionality. 

( Bhargavan et al., 

2016 )[42] 

F ∗ F ∗ is a high-level general-purpose programming language built for the formal verification of its programs. F ∗

programs can be converted to other high-level programming languages such as C, F# etc. after verification to 

provide functional correctness and security. 

( Luu et al., 2016 ) ETHERLITE ETHERLITE is an extract of Ethereum’s EVM. ETHERLITE is stack machine augmented with memory retaining some 

Ethereum-like features. 

( Tsankov et al., 2018 ) Securify 

language 

Securify language is a Domain specific language for Securify platform. The language is used to express security 

patterns against which smart contracts are verified. 

( O’Connor, 2017 ) Simplicity Simplicity is a functional language without loops or recursions for blockchain based systems. It has the following 

key features: 
• Provides upper bounds on amount of computation required with static analysis 
• Minimizes storage requirements and bandwidth. 
• Removes unused code at redemption time to improve privacy 
• Information outside the transaction are not accessible by programs. 
• Facilitates reasoning of programs with formal semantics 

( Scoca et al., 2017 ) dSLAC dSLAC is a language which is used for the specification of smart contracts in the cloud computing domain. 

( He et al., 2018 ) SPESC SPESC is a smart contract specification language. Smart contracts with SPESC can be defined in natural language 

like grammar which can make rights and obligations of parties involved in smart contracts unambiguous. 

( Hirai, 2017 ) Lem Lem is a language that used for generating definitions from domain specific tools and porting them for proof in 

interactive theorem provers such as HOL Coq and Isabelle. Lem also provides features common to other functional 

programming languages such as logical constructs. 

( Biryukov et al., 2017 ) Findel Findel is a financial domain specific language suited for blockchain applications that is purely declarative. Findel 

can be used to formalize smart contract clauses that makes them machine readable and unambiguous, 

( Grossman et al., 2018 ) SMAC SMAC is an object-oriented programming language, which allows pass-by-value parameters with integer-typed local 

variables and data members. Every function in SMAC has a only one formal parameter namely “arg” and reruns a 

variable by assigning it a value with “ret”. 

( Sergey et al., 2018 ) SCILLA SCILLA is a translation target for high-level smart contract programming languages instead of being a high-level 

programming language irself. This translation is to be used for the application of formal verification of smart 

contracts before being further compiled to executable low-level code. 

Fig. 6. The issues and vulnerability aspects of smart contracts focused by 

DSL/specification/general purpose languages in relevant works. 
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17 https://tool.smartdec.net/ . 
Fig. 6 provides a breakdown of the issue or vulnerability aspects

of smart contract focused by the languages mentioned in the rel-

evant works. The figure makes it clear that there was only one (B

language) language that did not focus on smart contract function-

ality verification. 

4.5. RQ5: What automated tools and frameworks are proposed in 

supporting state-of-the-art formalization approaches of smart 

contracts? 

There were 15 formal code analyses, verification tools or frame-

works presented in the relevant works. Most of these tools are

based on symbolic execution and theorem proving methods. Other
pproaches such as formal modeling, model checking, and verifi-

ation of certain properties of smart contracts with the usage of

ormal verification-based programming languages were also used

o support these tools and frameworks. Table 3 presents the list of

ools and frameworks and their descriptions as well as the formal

echniques used to back these proposals. 

The table suggests that there are several symbolic execution

ools proposed in literature. All these tools are used to statically

nalyze the smart contracts for functional correctness and runtime

afety. Hence, one could easily be misguided into thinking that

ll these tools are equally accurate and effective at smart contract

ulnerability detection since, they all virtually perform the same

asks. But, this misconception was cleared by a recent empirical

tudy performed by Parizi et al. ( Parizi et al., 2018 ) which evalu-

ted smart contracts security vulnerability detection tools (includ-

ng Oyente, Mythril, Securify, and SmartCheck . 17 ) from the detec-

ion accuracy and effectiveness points of view. Their results indi-

ated that there are discrepancies between the tools on different

ecurity vulnerabilities. 

. Open issues and future directions 

Blockchain has come a long way since its introduction in 2008

s a backbone to Bitcoin ( Nakamoto, 2008 ). Over the last decade,

lockchain has disrupted a wide range of industries such as Cloud

omputing, Finance, Internet of Things (IoT), Security and Privacy

tc. But, this rise in popularity hasn’t been without its fair share

f problems such as security vulnerabilities, consensus protocol is-

ues, privacy protection issues, scalability of blockchains etc. Re-

https://tool.smartdec.net/
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Table 3 

Automated tools and frameworks presented in the relevant works. 

Tool/Framework 

Presented 

Formal verification 

technique used 

Tool description 

FSolidM Finite State Machine The tool is built for designing smart contracts as Finite State Machines on a graphical interface. It can also 

generate automated Ethereum smart contract code. 

Hydra Formal Modelling The Hydra framework is built to provide bug bounties for honest vulnerability disclosures. 

Solidity ∗ and EVM 

∗ F ∗ for program and 

bytecode verification 

The framework analyzes and verifies both functional correctness and runtime safety of Solidity smart 

contracts with a functional programming language (F ∗). 

Hawk Formal Modelling A smart contract platform which does not make financial transactions available publicly on the blockchain 

to maintain transactional privacy. 

Oyente Symbolic Execution A tool to detect potential security vulnerabilities and bugs. 

Framework for global 

system safety 

Theorem Proving The framework that implements several security primitives including: a notion of a proof object, 

hash-functions, a Fork Choice Rule and a Validator Acceptance Function. 

Raziel Theorem Proving Raziel combines secure multi-party computation and proof-carrying code to provide privacy, correctness 

and verifiability guarantees for smart contracts on blockchains 

Mythril Symbolic Execution A security analysis tool for Ethereum smart contracts, and its symbolic execution backend LASER-Ethereum 

Securify Symbolic Execution A security analyzer for smart contracts that can prove contract behaviors as safe/unsafe with respect to a 

given property. 

SASC Symbolic Execution SASC is a static analysis tool that can find potential logic risks and generate topological charts of invocation 

relationships. 

Town Crier Theorem Proving Town Crier acts as a link between existing trusted non-blockchain based websites and smart contracts to 

provide authenticated data to smart contracts. 

ZEUS Theorem Proving, 

Model checking 

ZEUS is a smart contract safety verifier that utilizes both symbolic model checking and abstract 

interpretation. 

MAIAN Symbolic analysis MAIAN is a tool used to specify and reason about trace properties in smart contracts. The tool utilizes 

symbolic analysis and concrete validator to exhibit real vulnerabilities. 

KEVM Theorem Proving Formal semantics of EVM in K 

contractLarva Finite State Machine Runtime safety and verification tool for Solidity smart contracts on Ethereum 
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a  
ently, formal methods have been proposed to mitigate many of

hese issues and vulnerabilities but, there is still long ways to go

n the wide scale adoption of formal methods and blockchain it-

elf. This section presents and discusses the challenges ahead in

he intersects of formal methods and blockchain smart contracts: 

Formal Testing – In the current age of software and technol-

gy, formal testing is an integral component of software develop-

ent life cycle (SDLC). It is used in making sure that a software

ehaves and performs as per its specifications and requirements

ased on all possible inputs’ conditions. But, when it comes to

mart contract development, formal testing remains largely over-

ooked. This is particularly unfortunate as the process of formal

esting has proven its worth when it comes to the development

f safety critical systems and large financial systems such as Air-

raft systems, medical systems, large banking software etc. Hence,

t should not come as a surprise that formal testing can only bring

ruitful results in making sure that a smart contract does what it

s supposed to do based on its specification. Basic rules and guide-

ines of formal testing can easily be transitioned from safety criti-

al systems to the smart contract domain for their verification. For

nstance, one can easily write formal test cases for Solidity smart

ontracts based on certain mathematical logic and rules by setting

p a testing environment with truffle. 18 These test cases can be

ritten in JavaScript and can be executed on a test network to

heck several properties of smart contracts. Additionally, we highly

ecommend exploring Property-based testing ( Aichernig et al., 2017 ;

ichernig and Schumi, 2016 ) (pioneered by QuickCheck 19 ) which is

 technique for testing software that is aimed at verifying prop-

rties of a program that must hold true on every input, which is

andomly generated from a wide range of possible inputs for that

rogram. This technique can be used to check and verify several

mart contract properties and behaviors based on a wide range of

andomly generated inputs. For example, by feeding random input

ata to smart contracts developers can find bugs and edge cases
18 https://truffleframework.com/ . 
19 http://hackage.haskell.org/package/QuickCheck . 

s  

t  
hat they would have missed otherwise, that would have resulted

n failure or unexpected behavior of that particular smart contract.

Automated formal verification – Automated formal verification

s a promising approach to detect bugs and other security vulner-

bilities to guarantee the functional correctness of smart contracts.

owever, this solution adds two new challenges to the puzzle it-

elf: 1) Limitation of memory and time of the machine that ex-

cutes the contracts for formal verification. In several automated

ormalization approaches, bug and security issues are found by ex-

loring as many execution states as possible. In this regard, for

omplex programs and protocols, the upper bound of execution

ime and runtime computer memory becomes a problematic lim-

tation. Even though there are several techniques to reduce the

umber of states to be explored, these techniques are generally

ot sufficient for complex smart contracts. 2) Formalization cor-

ectness while using a formal verification tool. We often formalize

he program, security patterns for correctness and environment of

peration. The accuracy of formalization is crucial for the result of

xecution of the tool. However, the state-of-the-art work lacks an

nnovative tool that can check this accuracy. 

From the above perspective, a good direction for the future of

utomatic formal analysis and verification could be the develop-

ent of program patterns or templates and also tightly defining

he language to limit the number of states. When it comes to im-

lementation, the actual template for formalization is the protec-

ion profile. Moreover, for the verification of cryptographic proto-

ols, evaluation reports can be used as templates which align with

SO/IEC 29128. 20 

Domain Specific Languages (DSLs) for Ethereum – Smart con-

racts written in Solidity on the Ethereum platform have suf-

ered from multiple security vulnerabilities in the past few years

 Atzei et al., 2017 ), which have resulted in both theft and gigan-

ic financial losses. Most of these vulnerabilities could have been

voided with the help of formal analysis and verification of such

mart contracts before deploying them on the blockchain. But, due

o the fact that the state-of-the-art domain specific languages such
20 https://www.iso.org/obp/ui/#iso:std:iso- iec:29128:ed- 1:v1:en . 

https://truffleframework.com/
http://hackage.haskell.org/package/QuickCheck
https://www.iso.org/obp/ui/#iso:std:iso-iec:29128:ed-1:v1:en
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as Solidity is not built for formal verification itself makes matters

worse as it is not a perfect DSL for writing safe smart contracts

and is vulnerable to certain pitfalls. 21 Hence, even the most ex-

perienced smart contract developers can tend to leave behind se-

curity vulnerabilities or bugs in their code. This leaves developers

and organization no choice but to turn to third party organizations,

frameworks or tools for code analysis, reviews and audits which in

itself may be expensive and can become a limitation for small or-

ganizations and individual developers. Thus, to mitigate this limi-

tation, we propose introduction of a new domain specific language

for developing smart contracts that fully supports formal analysis

and verification. Additionally, defining such a domain specific lan-

guage may also help in solving the limitations of state-of-the-art

automated formal varication of smart contracts by reducing the

number of states to be explored and providing a formalized tem-

plate. 

The issues related to smart contracts and blockchain-based sys-

tems is of great concern as these technologies have evolved into

multibillion-dollar industries and hence, requires expertise from

multiple research domains such as: networking, programming lan-

guages, formal methods and cryptography researchers etc. Real

progress on these issues would be hard to achieve if the gaps be-

tween these research communities is not bridged. Hence, we hope

this literature review brings these research gaps and issues under

the limelight of these communities, so they can all coordinate for

the improvement of smart contracts and blockchains in general. 

6. Conclusions 

In this systematic review, we presented and analyzed the state-

of-the-art research and achievements concerning the formalization

approaches in smart contracts. This was achieved with the help of

a systematic paper selection protocol through which we identified

35 relevant works for this systematic review. 

We analyzed the selected 35 studies based on four identified

research questions (RQs): 1) RQ1: What formal methods and tech-

niques are used in the verification and improvement of smart con-

tracts? 2) RQ2: Which issues or vulnerability aspects of smart

contracts do formalization approaches target? 3) RQ3 : How do

formalization approaches mitigate issues and vulnerabilities in

smart contracts ? 4) RQ4 : What domain specific languages (DSL) or

formal/specification/general-purpose languages are proposed/used

for formalizing smart contracts? 5) RQ5: What automated tools

and frameworks are proposed in supporting state-of-the-art for-

malization approaches of smart contracts? 

The analysis conducted in this SLR indicates that theorem prov-

ing is the most commonly used formal technique for the verifi-

cation and validation of smart contracts. Model checking, formal

modelling and symbolic execution are other approaches which are

also used for checking correctness and static analysis of smart con-

tracts. Other formal approaches include the proposals of specifi-

cation languages for writing and designing smart contracts such

as Findel and SPESC. Specifically, there have been 12 languages

(domain specific/specification/general purpose programming lan-

guages) proposed or used in 13 relevant works for the formaliza-

tion of smart contracts on blockchains, while there were 15 au-

tomated formal verification tools/frameworks to provide support.

Formal methods have most commonly been used to verify smart

contract functionality. Security and privacy are other aspects of

smart contracts that have been focused in the relevant works. 

In addition to this analysis, we have also identified three ma-

jor open issues currently looming in the smart contract domain:
21 https://solidity.readthedocs.io/en/v0.4.24/security-considerations. 

html#security-considerations . 

d  

n  

g  

a  
) Formal Testing, 2) Automated formal verification of smart con-

racts and 3) Domain Specific Languages (DSL) for the Ethereum

latform. We have also provided possible solutions and future di-

ections to mitigate these issues which would take the smart con-

ract domain one step closer to being formally sound and robust. 

Smart contracts on blockchains have faced several issues and

ulnerabilities since the inception of the idea. Many of these vul-

erabilities have caused significant financial damages. Formaliza-

ion of smart contracts have helped in solving and mitigating many

f these issues and vulnerabilities. But, as this infant domain ma-

ures, new vulnerabilities will surface which would require a com-

ined effort from blockchain, cryptographic and formal methods

esearch communities to solve. Hence, the motivation of our work

as to bring these communities closer together by summarizing

urrent achievements and highlighting open challenges for the im-

rovement of smart contracts and blockchains in the future. We

oresee this work to be an important piece of literature for con-

ucting future empirical analysis of various smart contract formal-

zation approaches, which could provide further valuable insight

egarding the performance of these approaches as well as highlight

ey attributes such as their accuracy and computation cost. 

eclaration of Competing Interest 

The authors declared that there is no conflict of interest in this

tudy. 

ppendix A: Summary of the final set of works 

Kim and Laskowski ( Kim and Laskowski, 2017 ) stated principles

egarding the possible evolution of smart contracts on blockchains,

ncluding: 1) Blockchains, whilst reducing the uncertainty of value

xchange can also increase complexity from having to subsume

ork from third parties; 2) Smart contracts can be used to de-

rease the complexity arising from eliminating third parties with

he use of blockchain; 3) The evaluation of smart contract models

f several parties lowers uncertainty of value exchange whilst in-

reasing transparency. Additionally, the authors also emphasize the

se of formal models (mathematical, logical, or simulation-based)

hich can also increase transparency when evaluating or interpret-

ng smart contracts of different parties. 

Dennis et al. ( Dennis et al., 2016 ) present a solution for the scal-

bility limitation of blockchain based systems. The authors propose

 constant fixed size blockchain called “rolling blockchain” which

ay solve the problem of exponential growth of state-of-the-art

lockchain based systems. Additionally, they present a formal anal-

sis of this proposed blockchain model, the results of which sug-

est that the deletion of data from the proposed model of the

lockchain does not affect its security when compared to tradi-

ional blockchains. 

Mavridou and Laszka ( Mavridou and Laszka, 2018 ) present

SolidM framework for modeling smart contracts as Finite State

achine (FSM). Their proposed tool is rooted in rigorous seman-

ics and provides an intuitive graphical editor, which supports au-

omatic code generation. The authors also provide a set of plugins

hat developers can add to their contracts. These plugins are meant

o implement: 1) security features for preventing known vulner-

bilities such as unpredictable state and reentrancy; 2) common

esign patterns to facilitate functional correctness with complex

unctionality in smart contract development. 

Breidenbach et al. ( Breidenbach et al., 2017 ) introduce the Hy-

ra Framework to incentivize honest disclosures of bugs and vul-

erabilities in smart contracts. The framework is based on a pro-

ram transformation that enables bug detection at runtime. The

uthors describe N-of-N-version programming (NNVP), which is

https://solidity.readthedocs.io/en/v0.4.24/security-considerations.html#security-considerations
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 variant of N-version programming that detects divergences be-

ween multiple program instances. They also formally show that

ydra contracts incentivize bug disclosure, for bounties orders of

agnitude below an exploit’s value. Finally, they model strong

ug-withholding attacks against on-chain bounties, and analyze

ubmarine Commitments, a generic defense to front-running that

ides transactions in ordinary traffic. 

Idelberger et al. ( Idelberger et al., 2016 ) outline the technical

nd legal disadvantages of logic-based smart contracts in regards

f usual activities featuring ordinary contracts. Additionally, the au-

hors provide guidelines towards usage of such logic based smart

ontracts on blockchain based systems. 

Bai et al. ( Bai et al., 2018 ) introduce the application and crit-

cal issues in smart contracts. They propose the use of formal

odelling and verification to produce smart contract models and

erify smart contract properties respectively. A model verification

ool can be used to verify important properties and correctness of

mart contracts. A case study was presented with the help of a

amous model checking tool SPIN to illustrate the verification pro-

ess and effects. 

Abdellatif and Brousmiche ( Abdellatif and Brousmiche, 2018 )

ropose a modeling formalism based on strong semantics for the

erification of properties related to blockchain and smart contracts.

hey apply their formalism to a smart contract and model its inter-

ctions and behaviors with its execution environment. Also, they

imulate these behaviors in the BIP framework and analyze the

esults with Statistical Model Checking (SMC), which shows the

cenarios where smart contracts can be manipulated by malicious

sers. 

Bhargavan et al. ( Bhargavan et al., 2016 ) introduce a framework

ooted on F ∗ (a functional programming language for formal pro-

ram verification) to verify and analyze the functional correctness

nd runtime safety of Solidity based smart contracts. 

Kosba et al. ( Kosba et al., 2016 ) introduce Hawk, which is a de-

entralized system for smart contracts that provides transactional

rivacy by not storing financial transactions in the clear on the

lockchain. Hawk allows intuitive development of private smart

ontracts without requiring the implementation of cryptography.

n fact, the compiler for the proposed solution automatically gen-

rates cryptographic protocol wherever the parties bound by con-

ract interact with the blockchain. This is done using cryptographic

echnique known as zero-knowledge proofs ( Sah et al., 2016 ). 

Matsuo ( Matsuo, 2017 ) proposes an innovative approach for the

pplication of formal analysis and verification by considering tech-

ology layers of blockchain-based systems and their security con-

erns. These layers are identified as, implementation, protocol, and

anguage. Moreover, the author proposes a framework for the ap-

lication of formal analysis to these layers based on existing stan-

ards and results. 

Hildenbrandt et al. ( Hildenbrandt et al., 2018 ) propose KEVM,

n executable formal specification of the EVM’s bytecode stack-

ased language built with the K Framework. The KEVM is designed

o provide a backbone for further rigorous formal analyses. 

Luu et al. ( Luu et al., 2016 ) outline several security issues where

 malicious entity can gain profit by manipulating the execution of

mart contracts. These issues highlight small gaps in the under-

tanding of the distributed semantics of the underlying smart con-

ract platform. Hence, as a counter measure, to make contracts less

ulnerable they propose ways to enhance the operational seman-

ics of the Ethereum platform. Additionally, the authors introduce

yente which is a symbolic execution tool to detect security vul-

erabilities. 

Pîrlea and Sergey ( Pîrlea and Sergey, 2018 ) present and imple-

ent a formal model of a distributed blockchain-based consensus

rotocol and its data structures (block forests). They also intro-

uce several theorems regarding pure functional implementation
f block forests. The authors work is based on several primitive

ecurity features like, hash-functions, a notion of a proof object,

 Validator Acceptance Function, and a Fork Choice Rule. Further-

ore, the authors characterize their assumptions regarding these

omponents to prove the consensus of the global system. 

Chaudhary et al. ( Chaudhary et al., 2015 ) investigate the Bit-

oin protocol correctness and provide its formalization as a UP-

AAL model. This study is inspired by the idea of double spend-

ng in Bitcoin and the lack of a third party to guard against the

roblem. The phenomena of double spending can take place if a

ser could prove to the majority that the blockchain without his

revious payment is legitimate. 

Le et al. ( Le et al., 2018 ) aim to determine the input condi-

ions for which a smart contract terminates (or does not terminate)

y proving conditional termination and non-termination statically.

his is done by making sure that both, current state of the smart

ontract and the contract’s input satisfy the termination condition

o run on a proof carrying blockchain before the actual execution

f the contract. 

Raziel ( Cerezo Sánchez, 2017 ) provides privacy, verifiability and

orrectness guarantees of smart contracts by combing proof car-

ying programs and secure multi-party computations. Additionally,

he author introduces ways in which Zero-Knowledge Proofs of

roofs or Proof-Carrying program certificates can be used to prove

he validity of smart contracts before execution to other parties in

 private manner. Finally, the authors demonstrate ways in which

iners can rewarded for producing pre-processed data for secure

ulti-party computations. 

Ellul et al. ( Ellul and Pace, 2018 ) demonstrate that standard

echniques for runtime verification can be used for the verification

f smart contracts, including a novel stake-based instrumentation

echnique which ensures that the violating party provides insur-

nce for correct behavior. The author also discusses their partially

mplemented proof-of-concept tool called ContractLarva. 

Tsankov et al. ( Tsankov et al., 2018 ) propose Securify, which is a

ecurity vulnerability analyzer for smart contracts on the Ethereum

latform. Securify is completely automated and can establish con-

ract behaviors as safe or unsafe in regard to a given property. The

nderlying vulnerability analysis comprises of two steps: 1) the

rst step is the symbolic analysis of the contract dependency graph

hich is used to carve out precise semantic information from the

rogram; 2) the second step is compliance checking and searching

or violation patterns to capture sufficient conditions to prove if a

roperty is valid or not. 

Zhou et al. ( Zhou et al., 2018 ) propose a method to detect po-

ential security risks in smart contract programs. This is meant to

erform two main functions: 1) Syntax topology analysis of smart

ontract invocation relationship, 2) Detection and location of logi-

al risks, and presentation of results on a topological diagram. The

uthors also propose SASC which is a static analysis tool that is

eant to find potential logic risks in smart contracts and generate

opological diagram of invocation relationships. 

O’Connor ( O’Connor, 2017 ) introduces Simplicity, which is a

ombinator-based, typed, functional language meant to be used

or blockchain based applications. Simplicity does not support

oops and recursions. The objective of Simplicity is to build

pon the current blockchain based languages such as Ethereum’s

VM and Bitcoin Script by avoiding some critical problems that

hey face. Simplicity is rooted on formal denotational semantics

hich are defined in a general-purpose software proof assistant

Coq’. 

Scoca et al. ( Scoca et al., 2017 ) introduce a formal language that

an be used to specify interactions between requests and offers.

he paper also presents an approach for the self-governed negoti-

tion of smart contracts, which is used to analyze the cost and the

ecessary changes required to reach an agreement. 



14 A. Singh, R.M. Parizi and Q. Zhang et al. / Computers & Security 88 (2020) 101654 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

a

 

a  

a  

c  

i  

c

 

I  

i  

b  

t

 

b  

e  

b  

c  

m  

c

 

a  

n  

n  

S  

c  

g  

a  

f

R

A  

 

A  

 

A  

 

 

A  

 

 

 

B  

 

B  

 

 

B  

 

B  

 

 

 

B  

 

 

 

C  

 

 

C  

 

Mueller ( Mueller, 2018 ) introduces Mythril, a security analy-

sis tool based on symbolic execution backend for Ethereum smart

contracts. The first part of the paper explains applications of sym-

bolic execution and constraint solving in smart contract security

analysis and verification. The second part showcases the use of

symbolic analysis, static analysis, and control flow checking to dis-

cover real-world issues. 

He et al. ( He et al., 2018 ) introduce SPESC, which is a smart

contract specification language. The specification of a smart con-

tract can be defined in SPESC for collaborative design. This allows

smart contracts to be specified like real world contracts written in

natural language that can help in clearly defining the rights and

obligations of all parties involved in the contract. 

Liao et al. ( Liao et al., 2017 ) introduce a platform that sup-

ports Behavior-Driven Development (BDD), deployment and testing

of smart contracts for the Ethereum platform. The objective of the

platform is to provide and resolve cross-cutting concerns across

smart contract development life cycle. 

Amani et al. ( Amani et al., 2018 ) further extend EVM formal-

ization in Isabelle/HOL with a strong program logic at the byte-

code level. The authors structure bytecode sequences into blocks

of straight-line code. Additionally, they create a program logic to

reason about this formalization. The abstraction provided can help

in controlling the complexity and cost of formal analysis and veri-

fication of Ethereum smart contracts. 

Zhang et al. ( Zhang et al., 2016 ) introduce Town Crier (TC). TC

acts as a link between existing commonly trusted non-blockchain

based websites and smart contracts. It utilizes a combination of a

trusted hardware back-end and a blockchain front-end to provide

authenticated data to smart contracts from HTTPS enabled web-

sites. 

Bigi et al. ( Bigi et al., 2015 ) validate and analyze DSCP (De-

centralized Smart Contract Protocol), a protocol for smart con-

tracts idealized after BITHALO. Under the assumption of return

maximization and perfect rationality, models such as Game the-

ory can provide analysis of the behavior of the players in the

game/protocol. These models also provide conditions for agreeing

on the contract. Moreover, the simulation and modeling aspects of

game theory presented in the paper are supported by formal meth-

ods for contract functionality verification purposes. 

Kalra et al. ( Kalra et al., 2018 ) introduce ZEUS, which is a frame-

work that validates and verifies the fairness and correctness of

smart contracts. ZEUS utilizes the power of symbolic model check-

ing and abstract interpretation in addition to the usage of con-

strained horn clauses to verify contract safety. The authors have

also built a prototype of their framework for both Fabric and

Ethereum blockchain platforms. 

Sergey and Hobor ( Sergey and Hobor, 2017 ) explore similarities

between classical problems of shared-memory concurrency and

multi-transactional behavior of Ethereum smart contracts. They ex-

amine and analyze two examples from the Ethereum blockchain

based on “how they are vulnerable to bugs that are closely rem-

iniscent to those that often occur in traditional concurrent pro-

grams”. This description of contracts-as-concurrent-objects pro-

vides a deeper knowledge of potential smart contract threats. The

results also introduce improved practices with the application of

formal verification techniques for developing smart contracts. 

Grishchenko et al. ( Grishchenko et al., 2018 ) provide initial se-

mantics of EVM bytecode, which are then formalized in F ∗ proof

assistant. The authors also provide validation of the resulting ex-

ecutable code against the Ethereum test suite. Additionally, they

provide formal definition of several security properties for smart

contracts. 

Hirai ( Hirai, 2017 ) provides the definition of EVM in Lem, which

is a language that can be compiled for several known theorem

provers. Using the provided definition, the author provides proofs
or several safety properties of Ethereum smart contracts in Is-

belle/HOL theorem prover. 

Biryukov et al. ( Biryukov et al., 2017 ) propose Findel, which is

 financial domain-specific language for blockchain networks. The

uthors implement an Ethereum smart contract that measures the

ost of operation of a marketplace for Findel contracts. They also

ntroduce the problems related to modeling and developing finan-

ial agreements on decentralized networks. 

Nikolic et al. ( Nikolic et al., 2018 ) propose and implement MA-

AN, a tool which is based on symbolic analysis and concrete val-

dator to exhibit various security exploits. Their proposal can also

e used for precisely specifying and reasoning about trace proper-

ies. 

Grossman et al. ( Grossman et al., 2018 ) present Effective Call-

ack Freedom, a general correctness condition for callbacks which

nables modular reasoning in environments with local-only muta-

le states such as Ethereum. The authors also show that their work

an be used to mitigate bugs without severely limiting program-

ing style on the Ethereum platform. These bugs can be dynami-

ally checked with low runtime overhead. 

Finally, Sergey et al. ( Sergey et al., 2018 ) introduce SCILLA that

llwos extensive interaction patterns with seperation of commu-

ication aspect of smart contracts and a programming compo-

ent principled with strong semantics open for formal verification.

CILLA is supposed to be a translation target for high-level smart

ontract programming languages instead of being a high-level pro-

ramming language irself. This translation is to be used for the

pplication of formal verification of smart contracts before being

urther compiled to executable low-level code. 
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