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Abstract

Ransomware can prevent a user from accessing a device and its files until a ransom is paid to the

attacker, most frequently in Bitcoin. With over 500 known ransomware families, it has become one

of the dominant cybercrime threats for law enforcement, security professionals, and the public.

However, a more comprehensive, evidence-based picture on the global direct financial impact of

ransomware attacks is still missing. In this article, we present a data-driven method for identifying

and gathering information on Bitcoin transactions related to illicit activity based on footprints left

on the public Bitcoin blockchain. We implement this method on-top-of the GraphSense open-

source platform and apply it to empirically analyze transactions related to 35 ransomware families.

We estimate the lower bound direct financial impact of each ransomware family and find that,

from 2013 to mid-2017, the market for ransomware payments has a minimum worth of USD

12 768 536 (22 967.54 BTC). We also find that the market is highly skewed with only a few number

of players responsible for the majority of the payments. Based on these research findings, policy-

makers and law enforcement agencies can use the statistics provided to understand the size of the

illicit market and make informed decisions on how best to address the threat.
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Introduction

Ransomware attacks have eclipsed many other cybercrime threats

and have become the dominant concern for law enforcement and se-

curity professionals in many nations (cf. [1–3]). Ransomware is a

class of malicious software that, when installed on a computer, pre-

vents a user from accessing the device—usually through unbreakable

encryption—until a ransom is paid to the attacker. In this type of at-

tack, cybercriminals do not profit from the resale of stolen informa-

tion on underground markets, but from the value victims assign to

their locked data and their willingness to pay a fee to regain access

to them. To that extent, the business model of ransomware seems

conducive to more favorable monetizing opportunities than other

forms of cybercrimes, due to its scalable potential and the removal

of intermediaries.

Prominent recent ransomware examples are Locky, SamSam, or

WannaCry, the latter infected up to 300 000 victims in 150 coun-

tries [1]. Like other ransomware, these families focus on extorting

money from victims and thus raise fear and concern among potential

victims who see the attack as a direct intimidation [4]. At the time of

writing, there are 5051 known ransomware families detected and al-

most all of them demand payments in Bitcoin [5], which is the most

prominent cryptocurrency to this date.

Yet, global and reliable statistics on the impact of cybercrime in

general, and ransomware in particular, are missing, causing a large

misunderstanding regarding the severity of the threat and the extent

to which it fuels a large illicit business. Most of the statistics available

on cybercrime and ransomware are produced by private corporations

(cf. [6–8]) that do not disclose their underlying methodologies and

1 https://id-ransomware.malwarehunterteam.com/
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have incentives to over- or underreport them since they sell cyberse-

curity products and services that are supposed to protect their users

against such threats [9]. Also, both cybercrime and ransomware

attacks take place in many regions of the world and reporting the

prevalence of the threat on a global level is difficult, especially when it

involves a blend of fairly sophisticated technologies that may not be

familiar to a large number of law enforcement organizations [9, 10].

This is unfortunate because the lack of reliable statistics prevents pol-

icy-makers and practitioners from understanding the true scope of the

problem, the size of the illicit market it fuels and prevents them from

being able to make informed decisions on how best to address it, as

well as to determine what levels of resources is needed to control it.

But ransomware offers a unique opportunity to quantify at least

the direct financial impact of such threat: ransomware payments are

transferred in Bitcoin, which is a peer-to-peer cryptocurrency with a

public transaction ledger—known as blockchain—that is shared

among peers. When ransomware payments can be identified correct-

ly, the Bitcoin blockchain provides a reliable basis on which to as-

sess ransomware cash flows. Furthermore, a number of clustering

heuristics [11–13] have been proposed that support partitioning the

set of Bitcoin addresses observed in the entire cryptocurrency ecosys-

tem into maximal subsets, which are likely controlled by the same

real-world actor. Previous studies have measured ransomware pay-

ments in the ecosystem, but focused on a single ransomware family

(CryptoLocker [14]), did not make use of known clustering heuris-

tics [15] or, at the time of this writing, disclosed limited information

on their underlying methodology [16].

To provide a more comprehensive picture of the global direct fi-

nancial impact of ransomware attacks, we propose a data-driven

method for identifying and gathering information on Bitcoin trans-

actions related to ransomware and then apply this method for 35

ransomware families. More specifically, the contributions of this

article can be summarized as follows:

• We propose a data-driven method for identifying and gathering

Bitcoin transactions, related to ransomware attacks, that goes be-

yond known clustering heuristics.
• We implement this method on-top-of the open-source Graph-

Sense cryptocurrency analytics platform2 and make the transac-

tion extraction3 and analytics procedures4 openly available.
• We apply the method on a sample of 35 different ransomware

families and find new addresses related to each ransomware fam-

ily, distinguish collectors from payment addresses and, when

possible, track where the money is cashed out.
• We quantify the lower direct financial impact of each ransom-

ware family, show how ransom payments evolve over time and

find that from 2013 to mid-2017, the market for ransomware

payments for 35 families sums to a minimum amount of USD

12 768 536 (22 967.54 BTC).

To our knowledge, this article is the first to present a method to as-

sess payments of a large number of ransomware families in Bitcoin and

to provide a lower bound for their direct financial impacts, while being

openly available and reproducible. Our proposed method and findings

also roughly correspond with concurrent research reported in Bursztein,

McRoberts and Invernizzi [16] and Huang, Aliapoulios, Li et al. [17].

The remainder of this article is organized as follows: we provide

further details on ransomware and traceability of Bitcoin transac-

tions in Section 2. Our methodology for identifying and gathering

Bitcoin transactions is described in Section 3 and the results of our

study is presented in Section 4. The discussion follows in Section 5

along with the conclusion in Section 6.

State of the art

Ransomware
The concept of extorting money from user devices through mali-

cious means has had a long existence, such as fake antivirus that

forced users to buy a software to erase an inexistent malware from

their devices [3, 18, 19]. Still, ransomware is a criminal innovation

that seeks to monetize illegally accessed information by charging its

rightful owner a ransom—usually a few hundred dollars—to recover

the personal files that have a unique sentimental, economic, or ad-

ministrative value.

Nowadays, two modes of attacks have been used by ransomware

authors to prevent file access on a device. The first mode of attack aims

at locking out a user from a device by disabling the operating system

(OS). When the user starts the device, a ransom note appears requesting

money to be transferred for the device to start as usual [18, 19]. The se-

cond mode of attack is more sophisticated and uses cryptography. The

technique is to encrypt a user’s files on a device before requesting a ran-

som in exchange for the key that will decrypt them [19].

Since the first implementation of encryption as an attack tech-

nique, other technologies have been leveraged to increase the effi-

ciency of new variants of ransomware. The Onion Routing (Tor)

Protocol has allowed ransomware attackers to use an anonymous and

direct communication channel with their victims. The use of crypto-

currencies for ransom payments has enabled relatively anonymous

money exchanges, while evading the control of established financial

institutions and their law enforcement partners. The combination of

strong and well-implemented cryptographic techniques to take files

hostage, the Tor protocol to communicate anonymously, and the use

of a cryptocurrency to receive unmediated payments provide al-

together a high level of impunity for ransomware attackers [20].

Many argue that ransomware authors have proved to be highly in-

novative in the past years. Since 2013 and the first introduction of the

Cryptolocker ransomware, new variants have been designed and dis-

tributed by ambitious cybercriminals, building on the success of previ-

ous versions or fixing previous errors [3, 15, 18]. Yet, focusing on the

speed at which ransomware authors modify their malware and the

technologies used may lead to overestimate the severity of the threat.

As the current hype would have it, ransomware authors would

make large amounts of money—up to millions of dollars—with this

successful online black mailing activity [6, 21, 22]. As it is often the

case, the reality is not that simple. In 2015, Kharaz, Robertson,

Balzarotti et al. [15] published a long-term study on ransomware

attacks in which they analyzed 1359 samples from 15 ransomware

families. Even though ransomware has evolved, these authors found

that the number of families with sophisticated destructive capabil-

ities remains quite small. They also found that malware authors

mostly used superficial techniques to encrypt or delete a victim’s

files. Flaws were, moreover, found in the code, making the attack

easily defeated. Similarly, Gazet [4] conducted a comparative ana-

lysis of 15 ransomware and discovered that the code used was often

basic and built on high-level languages. Looking at the victims and

the ransoms asked, the author concluded that ransomware attackers

followed a low-cost/low-risk business model: they did not aim at tar-

geted extortion, but relied instead on small attacks for small ran-

soms, which could be compensated by mass propagation.

2 http://graphsense.info/

3 https://github.com/behas/ransomware-dataset

4 https://github.com/behas/ransomware-analytics
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Moreover, although ransomware was perceived, at first, as a de-

structive form of attack almost impossible to prevent and detect,

many initiatives led by the security community have tempered this

initial assessment [15]. For example, Kharaz, Arshad, Mulliner et al.

[23], Scaife, Carter, Traynor et al. [24], Song et al. [19], Continella,

Guagnelli, Zingaro et al. [25], and Kolodenker, Koch, Stringhini

et al. [26] all developed tools to detect ransomware-like behaviors

and prevent them from successfully encrypting a device. These tools

help mitigate ransomware attacks, minimizing the potential dam-

ages caused by this threat. The ransomware threat is thus certainly

evolving and growing, but is not out of control. The community

keeps finding ways to detect and block it preemptively. Moreover,

when a user is infected, an international initiative called “No More

Ransom!”5 provides decryption tools for victims of ransomware.

These decryption tools were developed by exploiting technical flaws

in malware implementations and more than 40 of them are available

on the website for different ransomware strains.

Bitcoin traceability research
Bitcoin is a peer-to-peer cryptocurrency initially introduced by

Satoshi Nakamoto (a pseudonym) in 2008 [5]. It can be used to exe-

cute pseudo-anonymous payments globally within a short period of

time and—at least before the enormous rise in popularity at the end

of 2017—with comparably low transaction costs. All executed and

confirmed financial transactions are stored in a shared and transpar-

ent ledger, known as the blockchain, which is publicly accessible.

Each transaction is represented by a list of inputs and a list of out-

puts, each reflecting an amount of Bitcoins transferred to a specific

recipient’s address. A Bitcoin address is an alphanumeric string

derived from the public key of an asymmetric key pair generated by

a Bitcoin user. Every user can hold multiple key pairs (and

addresses) in a wallet, and is encouraged to use a new address for

each transaction to increase the level of anonymity.

A number of heuristics have been developed to analyze transac-

tions and group all addresses in the Bitcoin blockchain into maximal

subsets (clusters) that can be associated with some real-world actors.

The multiple-input heuristics [5, 11] takes into account that two

addresses used as inputs in the same transaction must be controlled

by the same real-world actor. If one input address is used in another

transaction along with other input addresses, they can all be linked

to the same real-world actor. Cluster identification can further be

refined by applying change heuristics [12, 27, 28] which exploit the

concept of “change addresses” in Bitcoin. If one pays 1.5 BTC for a

service, but has an address with 2 BTC, the remaining 0.5 BTC will

be sent back to the user using what is defined as a “change address”.

When clusters are correlated with attribution data (tags) from

external sources, such as publicly available information in forums

(cf. [29]) or specific sites (e.g. blockchain.info, walletexplorer.org),

it is possible to deanonymize large fractions of the entire Bitcoin

transaction network. Clustering of Bitcoin addresses and tagging

addresses with attribution data are two central features that are

nowadays supported by modern cryptocurrency analytics tools (e.g.

Chainalysis, Elliptic, GraphSense, Bitcluster).

Applying these strategies on public transactions turns Bitcoin

into—at most—a pseudo-anonymous currency, in which monetary

flows can be traced from one known or unknown address to an-

other. These strategies can identify Bitcoin addresses and clusters

related to illicit activities, unless one makes use of mixing or

CoinJoin services. Mixing Services—also known as tumblers—are

specialized intermediaries that break the link between senders and

receivers by mixing coins and transactions with those of other users

[30]. A CoinJoin transaction, on the other hand, is a special transac-

tion in which multiple senders and recipients of funds combine their

payments in a single aggregated transaction. This requires a dedicated

service (e.g. JoinMarket) that matches interested users and supports

them in creating the transaction [31]. Both types of services facilitate

the amalgamation of coins belonging to multiple individuals in a sin-

gle transaction, making the tracing of illicit activity more difficult.

The effectiveness of clustering heuristics has been investigated by

Nick [32], who assessed the well-known multiple-input clustering

heuristics on a ground-truth dataset of approximately 37 K wallets

and found that such a clustering algorithm can guess, on average,

68.59% of all addresses belonging to a wallet. Building on that,

Harrigan and Fretter [33] concluded that address clustering in the

Bitcoin network was effective due to identified address reuse and the

existence of superclusters with incremental growth (e.g. exchanges,

gambling sites, darknet marketplaces).

Tracing Bitcoin transactions related to ransomware
A ransomware attacker who requests payments in Bitcoin will broad-

cast a Bitcoin address to which the victim needs to send money to.

This address is a ransom payment address from which clustering heu-

ristics in the Bitcoin network can be computed. Three previous studies

have investigated ransomware activity in the Bitcoin network.

Kharraz, Robertson, Balzarotti et al. [15] analyzed 1872 Bitcoin

addresses related to the CryptoLocker ransomware. They concluded

that Bitcoin addresses related to Cryptolocker had similar transaction

records, such as a short activity period and a few numbers of small

transactions. In total, 84% of the addresses analyzed had no more

than six transactions and 69% were active for less than 10days. Liao,

Zhao, Doupé et al. [14] also performed a measurement analysis of the

Cryptolocker ransomware. They started their investigation with two

Bitcoin addresses and generated a cluster of 968 addresses. They fil-

tered transactions based on ransom amounts and time and provided a

lower and upper bound for Cryptolocker’s economy. They mentioned

that possible connections exist between this ransomware and Bitcoin

services, such as Bitcoin Fog and BTC-e, and other cybercrime activ-

ities, like darknet markets. Finally, a concurrent research reported in

Bursztein, McRoberts and Invernizzi [16] and Huang, Aliapoulios, Li

et al. [17] traced Bitcoin transactions of several ransomware families.

The research estimated that about USD 16 million ransomware pay-

ments were made with Bitcoins over a 2-year period.

This study goes beyond the state of the art on ransomware and

Bitcoin traceability research by presenting a simple automated

method, built on known clustering heuristics, to systematically trace

monetary flows. It applies the method on Bitcoin transactions

related to 35 ransomware families to identify, quantify, and com-

pare their financial activity in the Bitcoin network.

Methodology

In the following section, we describe how we identify, collect, and

filter payments related to ransomware attacks by analyzing the

Bitcoin blockchain.

Seed dataset collection
To begin, Bitcoin addresses related to ransomware attacks were col-

lected from various sources. A total of 7037 addresses related to the

5 https://www.nomoreransom.org/
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Locky ransomware were provided to us by the Anti-Phishing

Working Group (APWG).6 An additional 139 Bitcoin addresses

were found in a thread maintained by Michael Gillepsi.7 Through

additional online searches, 46 Bitcoin addresses were found in vari-

ous sources, such as security researchers’ blogs or websites of organ-

izations analyzing ransomware activity. In total, we extracted 7222

Bitcoin addresses related to 67 ransomware families. Throughout

the whole study, we refer to them as seed addresses because they are

the ones used to generate the larger dataset.

Bitcoin network construction
We extracted transaction data from the Bitcoin blockchain using the

GraphSense open-source platform. Our most recent expansion ran

on October 28th, 2017 with 489, 181 blocks, 260, 167, 622 trans-

actions and 312 506 384 addresses. In order to trace monetary

flows, we computed two types of network representations over the

entire blockchain: the address graph, in which each vertex represents

a Bitcoin address and each directed edge represents the aggregated

set of transactions transferring value from one address to another.

For each directed edge we computed summary statistics, such as the

number of transactions and the estimated value flow between two

addresses, considering the daily Bitcoin/USD closing price as conver-

sion rates. The technical details of these computations are described

in more details in an earlier paper [34]. Moreover, transaction out-

puts containing explicit change addresses (i.e. addresses that were

also referenced by one of the inputs within the same transaction)

were removed to eliminate monetary flows having the same address

as source and destination.

The second type of network representation is the cluster graph.

To compute this graph, we partitioned the set of addresses observed

in the entire blockchain into maximal subsets (clusters) that are like-

ly to be controlled by the same real-world actor using the well-

known [11] and efficient [33] multiple-input clustering heuristics.

The underlying intuition is that if two addresses (i.e.: A and B) are

used as inputs in the same transaction while one of these addresses

along with another address (i.e.: B and C) are used as inputs in an-

other transaction, then the three addresses (A, B, and C) must some-

how be controlled by the same real-world actor [12], who

conducted both transactions and therefore possesses the private keys

corresponding to all three addresses. In the cluster graph, the nodes

represent address clusters and the directed edges represent transac-

tions between clusters. Since each cluster represents an aggregation

of addresses, the edges between clusters can be seen as an aggrega-

tion of each transaction value taking into account USD conversion

rates.

In order to associate real-world actors, such as Bitcoin exchanges

or gambling sites, with addresses and clusters, we gather publicly

available information, so-called tags, from two main external sour-

ces: walletexplorer.com and blockchain.info. Each tag associates a

specific Bitcoin address with some contextually relevant information

(e.g. BTC-e.com) about real-world actors and facilitates the inter-

pretation of monetary flows. The great power of Bitcoin address at-

tribution lies in its combination with clustering heuristics: if one can

attribute a single address within a cluster containing hundreds of

thousands of addresses, one can attribute the entire cluster. When

investigating monetary flows, Bitcoin exchanges are of great interest

because they are the entry and exit points of the cryptocurrency

ecosystem where fiat currencies (e.g. USD, EUR) are converted into

cryptocurrencies and vice versa.

Dataset expansion procedure
To expand the seed address dataset, which was obtained as

described in Section 3.1, we matched the set of seed addresses with

the set of all addresses extracted from the blockchain. This elimi-

nated 100 seed addresses not appearing in the blockchain because

they have not (yet) received ransom payments from victims and have

therefore not been used in a Bitcoin transaction, reducing our data-

set to 7122 addresses from 38 families. We then expanded the data-

set by linking these seed addresses to their corresponding clusters in

the cluster graph, which was precomputed through the multiple-

input heuristics. We refer to these addresses as expanded addresses.

However, if a ransomware author was involved in other activ-

ities that implied Bitcoin transactions before the ransomware cam-

paign, the multiple-input heuristic could result in false positives.

Thus, to ensure that the addresses in the expanded dataset were

related to ransomware activity, we applied a time filter on the

expanded dataset by determining a start date of ransomware cam-

paigns. For 25 families, we used Google trend searches and

extracted the first month in which online searches about the ransom-

ware family took place. Google trend searches can be a good indica-

tor of the beginning of a ransomware campaign because individuals

or organizations hit by a ransomware campaign are likely to search

online to learn more about the threat before they decide on a course

of action. This method was, however, not successful for 13 ransom-

ware families from which Google trend search did not have any

data. For those cases, we looked for online articles or blogs on the

ransomware family and took the earliest article published on the

subject, no matter in which language it was written. Out of the 13

families, we did not find any information on the start date of three

of them because no articles or blogs were published related to them;

they were sometimes only listed as a potential threat among other

ransomware families. They were thus removed from the sample.

Our final sample contains 7118 addresses related to 35 ransom-

ware families and corresponding time filters (Table 1).

In the remainder of this article, due to limited space, the subse-

quent tables will display the Top 15 ransomware families.8 Table 2

summarizes the top 15 ransomware families ordered by the number

of addresses in our expanded dataset after application of time filters

[Exp. Addr. (TF)]. It also lists the number of collected seed addresses

(Seed Addr.), the number of expanded addresses before time filtering

(Exp. Addr.), and the number of clusters (Clusters) that can be

assigned to each ransomware family. The numbers in Table 2 show

that the multiple-input heuristics can identify a large number of

Bitcoin addresses related to ransomware attacks. Table 2 also shows

that the seed address distribution is highly skewed.

In the case of Locky, we found that the number of seed addresses

is almost equal to the number of expanded addresses because the

multiple-input heuristic was already computed on the seed addresses

provided by the APWG. Also, the number of CryptoLocker

addresses corresponds exactly to the number of addresses (968)

reported by Liao, Zhao, Doupé et al. [14] in an earlier study. We

take these observations as a validation of our expansion method and

its implementation. When looking at Table 2, one can observe that

time filtering does not eliminate many addresses in the expanded

dataset. This indicates that the multiple-input clustering delivers

6 https://www.antiphishing.org/

7 Michael Gillepsi is the creator of the initiative: https://id-ransomware.

malwarehunterteam.com/

8 The results for the 35 families can be reproduced with the scripts and the

datasets provided in the Github repositories
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addresses within the expected time frame of each ransomware

campaign.

Beyond the clustering process: tracing outgoing

relationships
The dataset expansion using the multiple-input heuristic points to

new addresses related to ransomware attacks. While investigating

the expanded dataset, we developed a simple method to go beyond

the clustering process and trace monetary flows. Indeed, by focusing

on outgoing transactions for one ransomware family, one can find

common addresses receiving money from the expanded addresses

related to that ransomware family.

The method consists of taking into account, for each expanded

address, all the outgoing transactions and their respective outputs.

With this, an outgoing-relationships graph can be built for each ran-

somware family. The nodes in the graph are either the expanded

addresses or the addresses receiving money from the expanded

addresses. The edges in the graph illustrate the direction of the mon-

etary flow. For example, Figure 1 illustrates the outgoing-

relationship graph for the CryptoHitman ransomware family. The

red nodes represent addresses from our expanded address dataset

which belong to the CryptoHitman family and the gray nodes repre-

sent output addresses not in the dataset. The graph shows that some

addresses are key since they receive, more than once, money from

known CryptoHitman addresses. Other gray addresses in the graph

only receive one incoming transaction. They could possibly be

related to the CryptoHitman ransomware, but the information in

the graph is insufficient to allow such conclusion. While the

CryptoHitman graph is small enough for visual inspections, other

ransomware families have large graphs and require automated

mechanisms to distinguish key addresses.

Thus, to automatically distinguish key addresses in an outgoing-

relationships graph, we develop a simple method. For each node, we

calculate the number of incoming relationships in the graph, as

expressed in Definition 3.1:

Definition 3.1. The in-degree deg� a Bitcoin address is the sum of

all unique incoming relationships within the scope of a family-

specific outgoing-relationships graph.

We consider that each node that has deg(a)� � 2, in a family-

specific outgoing-relationships graph, is a key address for this ran-

somware family. Even though some addresses are already in the

dataset while others are not, they are all identified as key addresses

related to the ransomware family.

We computed an outgoing-relationships graph for each family in

the dataset and calculated the metric by applying the above defin-

ition. We found, in total, 2077 key addresses from the 35 families

studied. Table 3 presents the number of key addresses found with

the outgoing-relationships graph for each family, and shows how

many were already part of our expanded dataset (Key Expanded

Addr.) and how many were added by this method (New Key Addr.).

Estimating the lower bound financial impact of each

ransomware family
With the dataset generated through the different steps mentioned

above, an assessment of the minimum direct financial impact of

each ransomware family is possible. The multiple-input clustering

heuristic allowed an expansion of the dataset and the time filtering

ensured that the expanded addresses were within the time frame of

each ransomware campaign. Also, the method of tracing outgoing

relationships found key addresses that received money from the

expanded addresses related to a ransomware family. The key

addresses already in the expanded dataset (red nodes) are filtered

out of the expanded dataset for the financial assessment to avoid

double-counting ransom payments.

The impact of ransomware

Building on the methodology presented in the previous section and

the resulting dataset, we can now analyze Bitcoin transactions

Table 1. Time filters applied for top 15 ransomware families

Family Ransomware

Start Date

Investigation

Method

Locky 2016-02 Google Trends

CryptXXX 2016-04 Google Trends

CryptoLocker 2013-09 Google Trends

DMALockerv3 2016-01 Google Trends

CryptoTorLocker2015 2015-02 Google Trends

Globe 2013-04 Google Trends

SamSam 2016-01 Google Trends

NoobCrypt 2015-12 Manual search

EDA2 2015-09 Manual search

Flyper 2016-09 Manual search

Globev3 2017-01 Manual search

JigSaw 2016-04 Google Trends

Cryptohitman 2016-05 Google Trends

TowerWeb 2016-06 Manual search

WannaCry 2017-05 Google Trends

Table 2. Dataset statistics for top 15 ransomware families

Family Seed

Addr.

Clusters Exp.

Addr.

Exp.

Addr. (TF)

Locky 7038 1 7094 7093

CryptXXX 1 1 1742 1742

CryptoLocker 2 1 968 968

DMALockerv3 9 3 165 165

CryptoTorLocker2015 1 1 159 121

Globe 8 2 87 87

SamSam 44 11 47 47

NoobCrypt 2 1 28 28

EDA2 2 2 33 26

Flyper 2 1 26 26

Globev3 9 3 19 18

JigSaw 12 4 17 17

Cryptohitman 1 1 14 13

TowerWeb 1 1 14 8

WannaCry 5 1 6 6

Figure 1. CryptoHitman outgoing-relationships graph.
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related to ransomware. In the following section, we report our find-

ings on tracing ransomware monetary flows. Then, we provide a

lower bound estimation for the direct financial impact of the Top 15

families in our dataset and give insight into the value and longitudin-

al development of ransomware payments. Finally, we present an es-

timation of the minimum worth of the market for ransomware

payments.

Following the money trace
By computing the outgoing-relationships graph for each ransom-

ware family and applying the condition mentioned above, key

addresses for each ransomware family were found. Although the

minimum for an address to be determined as key was to score

deg(a)� � 2, many key addresses had a much higher score. Within

the sample of 2077 key addresses, the average deg(a)� was 12

(std¼27.66) incoming relationships and the median was six. The

maximum deg(a)� in the sample went up to 742 incoming relation-

ships. This indicates that ransomware authors do tend to consolidate

their money into one or several key addresses.

Intuitively, these key addresses can be considered collectors of a

ransomware family. We define a collector as an address used to col-

lect or aggregate payments from several payment addresses. To pic-

ture the role of a collector, Figure 2 shows the relationships of a

subset of Locky addresses. It illustrates that an address that was al-

ready in the expanded dataset (red node) has a high-degree centrality

and receives 32 payments of less or equal to 10 BTC. Considering

the high-degree centrality, this address can be considered a collector

of the Locky ransomware family. That figure also shows that the

high-degree centrality address sends 67 Bitcoins to a gray address,

which is an address not in the expanded dataset. Similarly, two

other addresses, from the expanded dataset, send 50 Bitcoins to that

gray address. At a higher level, this gray address can also be consid-

ered a collector of the Locky ransomware family.

However, it must be noted that a collector address does not ne-

cessarily belong to the same cluster of a family’s seed and expanded

addresses (such as the gray node in Figure 2). This is because decid-

ing whether an address is a collector or not depends on the monetary

flow in an outgoing-relationships graph related to a ransomware

family and has nothing to do with the multiple-input heuristic

results, which is based on the author having the private keys of all

addresses in the cluster. Indeed, some collector addresses can rather

be part of a larger cluster representing Bitcoin exchange services or

gambling sites, which can be used by attackers to convert ransom

payments to fiat currencies or to camouflage monetary flows.

If a key address belongs to a large known cluster, it could then

be considered the end route of tracing ransomware payments. As

explained before in the methodology, such assessment is possible by

investigating tags associated with addresses and address clusters. We

investigated the tags associated with the 2077 key addresses and

their corresponding clusters in more detail and found 163 key

addresses related to 28 tagged clusters with additional contextual in-

formation. Of these 163 collectors, 86 were related to known

exchanges organizations, such as BTC-e, LocalBitcoin, Kraken, and

Xapo. Another 47 were related to gambling websites like

SatoshiDice, Bitzillions, SatoshiMines, BetCoinDice, and

FortuneJack. A total of 12 addresses were linked to mixing services,

such as BitcoinFog and HelixMixer. These services are specialized

intermediaries which mix coins and transactions of different actors

and thereby camouflage the digital trace of cryptocurrency transac-

tions. They play a central role in money laundering and cybercrime-

related activities that rely on cryptocurrencies as a payment method.

Although our information on real-world actors behind addresses

and clusters was limited to the tags we retrieved from external sour-

ces and therefore incomplete, we found that some ransomware

attackers directly sent their ransom payments to known actors,

mostly gambling and exchange services. We also found that some

ransomware families specifically transacted multiple times with the

same actor. For example, 20 CryptoTorLocker2015 key addresses

were related to the SatoshiDice organization and 25 Locky key

addresses were linked to the BTC-e exchange. Also, about 27 key

addresses from five ransomware families belonged to the

Localbitcoin9 cluster, which is an exchange that allows individuals

to buy and sell Bitcoins to people who are geographically close.

As extra information, the outgoing-relationships analysis also

linked some families together. It illustrated that the Globe and

Globev3 families sent money to the same untagged collector address,

which was to be expected based on their shared naming features, but

was confirmed through our methodology. Similarly, 10key addresses,

with a few number of transactions and no tags, received money from

both the TowerWeb and Cryptohitman addresses. Intuitively, we can

assume that these two families might be related to the same real-

world actors who may run two families of ransomware simultaneous-

ly or may launder money on behalf of the two different groups.

Lower bound direct financial impacts
Besides tracing ransomware monetary flows, we assessed the lower

bound financial impact of each ransomware family. The basis for

Table 3. Key addresses identified for each family

Family New Key Addr. Key Expanded Addr.

CryptXXX 488 438

Locky 305 266

CryptoTorLocker2015 160 37

DMALockerv3 53 18

Globe 47 38

NoobCrypt 43 11

SamSam 31 6

CryptoLocker 26 24

EDA2 16 3

JigSaw 16 1

Cryptohitman 9 1

TowerWeb 9 1

Globev3 6 0

Flyper 5 3

VenusLocker 5 1

Figure 2. Locky collector address example.

9 https://localbitcoins.com/about
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our estimation was the time-filtered expanded ransomware dataset

described in Section 3.3. To avoid double-counting of ransomware

payments, we removed known collector addresses from the dataset.

Table 4 presents the total amount of received payments for the Top

15 ransomware families in the dataset. It shows received payments

in Bitcoin (BTC), rounded to two decimal places, and in US dollars

(USD). We find that the ransomware family that generated the larg-

est direct financial impact in our dataset is Locky, which received

payments totalizing USD 7, 834 737. The second ransomware fam-

ily is CryptXXX with a lower bound direct financial impact of USD

1 878 696, followed by the DMALockerv3 ransomware family with

USD 1 500 630. Based on our dataset, these are the three families

that created a lower bound direct financial impact of more than one

million. Then, SamSam, Cryptolocker, and GlobeImposter gener-

ated lower bound direct financial impacts of hundreds of thousands

of dollars each. As we go down the ranking, a rapid decline is

observed: the ransomware occupying the 15th position, Razy, barely

gathered a lower bound of USD 8073.

Due to the worth of the Bitcoin being highly volatile, we do not

consider these amounts as representing ransomware revenue.

Indeed, such assumption would assume that ransomware authors

cashed out immediately after receiving victims’ payments, which

may not be the case.

Also, when comparing the amounts above with findings reported

in other studies, we observe similarities and discrepancies. The results

for Locky and CryptXXX are consistent with the concurrent research

reported in Liao, Zhao, Doupé et al. [17] and Bursztein, McRoberts

and Invernizzi [16]. These authors found that the Locky ransomware

generated a direct financial impact of approximately USD 7, 8 million

and the CryptXXX ransomware approximately USD 1.9 million.

However, there is a discrepancy in the results for CryptoLocker: they

estimated that Cryptolocker created roughly USD 2 million in direct fi-

nancial impact versus USD 519 991 in our study. Liao, Zhao, Doupé

et al. [14] measured CryptoLocker payments from September 2013

until January 2014 and reported a lower bound direct financial impact

of USD 310 472 and an upper bound of USD 539 080, which is much

closer to our result. Yet, the discrepancy seems to come from the add-

ition of a single additional seed address in the Huang, Aliapoulios, Li

et al. [17] study that led to an expanded cluster of 3489 addresses. This

cluster neither appears in our research nor in Liao, Zhao, Doupé et al.

Another discrepancy is found for the SamSam ransomware: USD

1.9 million for this research against USD 583 498 for Bursztein,

McRoberts and Invernizzi [16]. The differences may arise from the

different number of seed addresses used in the Bursztein, McRoberts

and Invernizzi [16] research. Finally, we identify high or moderate

performing ransomware families, such as DMALockerv3 and

NoobCrypt, which did not register in the concurrent research.

Inspecting payments
Figure 3 presents the mean payment per family (and the standard

mean errors) of the Top 15 families. It shows that the incoming

transactions of 12 ransomware families range from very low pay-

ments up to USD 2000. Three ransomware families have higher pay-

ments on average: DMALockerv3, GlobeImposter, and SamSam. In

January 2016, DMALockerv3 was known to ask for ransom pay-

ments of 15 BTC (which was equivalent to USD 6491.25) [6, 35].

The SamSam ransomware was also known to ask ransoms based on

the number of machines infected and the ransom could go from 1.7

BTC (USD 4600) to decrypt a given machine up to 12 BTC (USD

32 800) to decrypt all machines infected [36]. For the

GlobeImposter ransomware, however, we could not find a

justification for the relative high mean payment value and mean

error rate. We only identified a single address for that ransomware

family in our dataset and, therefore, could not compute means

across addresses belonging to that family.

Figure 4 shows cumulative (red line) and non-cumulative ransom

payments (blue dots) over time for a selection of four ransomware

families: Cryptolocker, Locky, SamSam, and Wannacry. For three

famous families, CryptoLocker, Locky, and Wannacry, it shows the

viral effect of ransomware attacks and ransom payments. It also illus-

trates that famous ransomware campaigns are likely to be a short-

term, one-time deal, in which a ransomware author makes money

quickly and then stops, possibly due to various forms of security inter-

ventions. However, the SamSam ransomware seems to behave differ-

ently since the cumulative payment curve shows a somewhat linear

trend over a whole year, from July 2016 to July 2017. The difference

in this campaign could be related to the different approach used by

the ransomware authors, which is known to be more targeted [36].

Market for ransomware payments
When summing the lower bound direct financial impacts of all 35

families analyzed in our study, we find that, from 2013 to mid-2017,

the minimum worth of the market for ransom payments represents

USD 12 768 536 (22 967.54 BTC). This means that the Locky ran-

somware accounts for more than 50% of the ransomware payments

and the first three families account for 86% of the market while the

other 32 families share the remaining 12%. These results are similar

to the concurrent research reported in Bursztein, McRoberts and

Invernizzi [16] and Huang, Aliapoulios, Li et al. [17], which also con-

cludes that the ransomware market is dominated by a few kingpins.

Discussion

Overall, we believe that the method presented in this article led to

novel insights for each ransomware family. Ransom payment

addresses and collectors were differentiated in the dataset, allowing

one to assess ransomware lower bound direct financial impacts

without double-counting. Plus, we could trace monetary flows of

ransomware payments and identify destinations, such as Bitcoin

exchanges or gambling services, when contextually related informa-

tion (tags) was available. Our method is reproducible and could be

repeated for additional families with an updated seed dataset. Plus,

computation of address clusters over the most recent state of the

Bitcoin blockchain, along with more identification of clusters

Table 4. Received payments per ransom family (Top 15)

Family Addresses BTC USD

Locky 6827 15 399.01 7 834 737

CryptXXX 1304 3339.68 1 878 696

DMALockerv3 147 1505.78 1 500 630

SamSam 41 632.01 599 687

CryptoLocker 944 1511.71 519 991

GlobeImposter 1 96.94 116 014

WannaCry 6 55.34 102 703

CryptoTorLocker2015 94 246.32 67 221

APT 2 36.07 31 971

NoobCrypt 17 54.34 25 080

Globe 49 33.03 24 319

Globev3 18 14.34 16 008

EDA2 23 7.1 15 111

NotPetya 1 4.39 11 458

Razy 1 10.75 8073
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belonging to specific groups, could greatly increase the knowledge

on exit points of ransomware monetary flows.

We understand our approach has a number of limitations. First,

our methodology relies on a set of seed addresses manually collected

and the effectiveness of the multiple-input heuristics for uncovering

previously unknown addresses linked to this family. Thus, it misses

other ransomware families as well as other addresses that might be-

long to the same family, but cannot be linked to the same cluster.

Figure 3. Mean payment per family with standard mean error.

Figure 4. Longitudinal payment trend per family.
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This study includes 35 ransomware families and to this date, about

505 ransomware families have been reported.10 A small portion of

the whole ransomware landscape is thus presented. We invite other

researchers to replicate the analysis with additional ransomware

addresses. Indeed, the more addresses from various families become

available, the more accurate the picture of the overall market for

ransom payments will become. We address this limitation by con-

straining our analysis to “lower bound” direct financial impacts, to

ensure we are not claiming to assess the total impacts of a ransom-

ware family or of the entire market for ransom payments.

Second, our approach is limited by the extent and quality of the

attribution data (tags) available. Without this information, clusters

remain anonymous and inferences about their real-world nature are

impossible. Nevertheless, we believe that such data will increasingly

become available in the near future with the growing popularity of

cryptocurrencies and analytics tools.

Third, tumblers or mixing services, which facilitate the amal-

gamation of coins belonging to multiple individuals in a single trans-

action, increase the difficulty of tracing monetary flows in the

Bitcoin network (cf. [37]). We believe that our methodology is ro-

bust to such services because it only considers payments to addresses

derived from a manually collected set of ransomware payment

addresses and their direct outgoing neighbors in the address graph.

Thus, in the worst case, a key address would represent the entry

point of a mixing service. We also note that the transactions we at-

tribute to ransomware families could be part of CoinJoin transac-

tions. However, we argue that matching transactions with those of

other users when collecting ransom payments would add an undesir-

able third party (the CoinJoin service) dependency in the process.

This should hardly be implemented in practice as using CoinJoin

services to collect ransoms would also create delays in payments and

certainly cause considerable technical efforts for ransomware attack-

ers. This assumption is somehow confirmed by Huang, Aliapoulios,

Li et al. [17], who applied known CoinJoin detection heuristics on

their dataset and did not find such transactions.

Despite these limitations, we have shown that one can uncover

valuable insights into ransomware payments and the market values

of these attacks. Through the analysis of 35 ransomware families in

the Bitcoin network, we find that there are some clear inequalities in

the market, which could be considered as a top-heavy market in

which only a few players are responsible for most of the ransom

payments. This is also in line with the concurrent research reported

in Huang, Aliapoulios, Li et al. [17] and Bursztein, McRoberts and

Invernizzi [16]. Such finding has implications for law enforcement

agencies seeking to disrupt this market: mobilizing their limited

resources on a small number of highly capable players could lead to

takedowns and have a major (negative) impact on the ransomware

economy.

Moreover, when masking major ransomware families, such as

Locky, CryptXXX, and DMALockerv3, the drop-in ransom

amounts is substantial and we find that more than half of the ran-

somware family in the sample is responsible for less than USD 8000

of direct financial impacts. Kharraz, Robertson, Balzarotti et al. [15]

who studied 1359 samples from 15 ransomware families and Gazet

[4], who reversed-engineered 15 ransomware samples, both found

that most ransomware families used superficial and flawed techni-

ques to encrypt files. Few of them had actual destructive capabilities

and most of them could be easily defeated. This could explain why

only few ransomware families succeed at generating ransom pay-

ments worth millions.

Such observations do not mean that the ransomware threat

should be underestimated. Although the minimum worth of the

market for ransom payments, taking into account 35 families, is a

relatively modest amount (about USD 12 million) compared to the

hype surrounding the issue, the overall direct and indirect damages

they caused to individual and organizational victims are much

higher [21]. Yet, there is no doubt that initiatives developed by the

community to prevent ransomware attacks [19, 23, 24], as well as

the initiative “No More Ransom!”,11 that make ransomware de-

cryption tools available to victims, can have a positive impact on

limiting ransom payments. Some of the ransomware families in our

datasets have decryption tools available on this community website.

Although this could explain why some families do not have a large

direct financial impact, further analysis should look into the per-

formance changes of a ransomware family once a decryption tool is

made available.

Conclusions

We present a novel method for identifying and gathering informa-

tion on Bitcoin transactions related to illicit activity. We implement

this method on-top-of the GraphSense open-source platform and

apply it to empirically analyze transactions related to 35 ransom-

ware families. We estimate the lower bound direct financial impact

of each ransomware family and find that, from 2013 to mid-2017,

the market for ransomware payments has a minimum worth of USD

12 768 536 (22 967.54 BTC). We also find that the market is highly

skewed, dominated by a few number of players. From these findings,

we conclude that the total ransom amounts gathered through ran-

somware attacks are relatively low compared to the hype surround-

ing this issue.

We believe that our simple data-driven methodology and find-

ings provide valuable insights and carry implications for security

companies, government agencies and the public in general. It could,

for instance, be adopted in threat intelligence systems for following

ransomware payments associated with new campaigns in real time,

and for identifying inflection points such as explosive growth phases

and slowdown periods, when the plateau of ransom payments is

reached. An evidence-based and more granular longitudinal tracking

of the entire ransomware economy would allow government agen-

cies and security companies to fine-tune their intervention efforts

and awareness campaigns to focus on the two or three most active

and dynamic threats. For example, an agency confronted with sev-

eral ransomware attacks and with limited resources to mitigate

them could leverage financial revenue streams (as presented above)

to prioritize their resources on the most influential attacks. In other

words, by making more reliable, comprehensive, and timely infor-

mation available on the nature and scope of the ransomware prob-

lem, our methodology can help lead the discussion on how best to

address the threat at scale and support subsequent decision-making.

One straightforward future work would be to extend our ana-

lysis to additional ransomware families. Work in that direction

should also take into account the emergence of post-Bitcoin crypto-

currencies, such as Monero, Ethereum, or Zcash, which have

advanced privacy features and are gaining popularity in the digital

underground [1]. Kirk is the first ransomware family that has been

re-ported to use Monero for ransom payments [38].

Another possible area of future work lies in the application of

this methodology on other illicit activities that channel their finan-

cial transactions through the Bitcoin network, such as other

10 http://id-ransomware.malwarehunterteam.com/ 11 https://www.nomoreransom.org/
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extortion cases, trafficking of illicit goods, or money laundering.

Since Bitcoin is nowadays “accounting for over 40% of all identified

criminal-to-criminal payments” [39, p.46] and cryptocurrencies

seem to establish themselves as common currency for cybercriminals

[39], there are plenty of application areas for such a method.
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